

International GCSE Maths 4MA1 1H

Apart from questions 3c, 11b and 20 (where the mark scheme states otherwise) the correct answer, unless clearly obtained from an incorrect method, should be taken to imply a correct method.

Question	Working	Answer	Mark	Notes
1 a		$0 < p \leq 1$	1	B1
b	$0.5 \times 19 + 1.5 \times 12 + 2.5 \times 5 + 3.5 \times 2 + 4.5 \times 2 (=56)$ or $9.5 + 18 + 12.5 + 7 + 9 (=56)$ $“56” \div 40$	1.4	4	M2 for at least 4 correct products added (need not be evaluated) If not M2 then award M1 for consistent use of value within interval (including end points) for at least 4 products which must be added OR correct mid-points used for at least 4 products and not added M1 dep on at least M1 Allow division by their $\sum f$ provided addition or total under column seen A1 for 1.4 or $1\frac{2}{5}$

Question	Working	Answer	Mark	Notes
2	$170 \div 2 (=85)$ or $170 \div 2 \times 7 (=595)$ or $7 \div 2 (=3.5)$ $7 \times "85" + 170 (=765)$ or $9 \times "85" (=765)$ or $"595" + 170 (=765)$ or $170 \times "3.5" + 170 (=765)$ $"765" \div 3 (=255)$ or $"765" \div 3 \times 5 (=1275)$ $"255" \times 2$ or $"1275" - "765"$ or $"1275" \div 5 \times 2$	510	5	M1 M1 award of this mark implies the first M1 M1 dep on M2 M1 A1
	Alternative scheme			
2	$(\text{girls} =) \frac{2}{9} (\text{of children})$ $(\text{girls} =) \frac{2}{9} \times \frac{3}{5} \left(= \frac{2}{15} \right) (\text{of total})$ or $G : C : A = \frac{2}{9} \times \frac{3}{5} : \frac{3}{5} : \frac{2}{5} \left(= \frac{2}{3} : 3 : 2 \right)$ $"\frac{15}{2}" \times 170 (=1275)$ or $G : A = 2 : 6$ oe $"1275" \div 5 \times 2$ or 3×170	510	5	M1 M1 award of this mark implies the first M1 M1 dep on M2 M1 A1

Question	Working	Answer	Mark	Notes
3 a		y^{14}	1	B1
b		$16m^{12}$	2	B2 if not B2 then B1 for am^{12} or $16m^b$ or 2^4m^{12} $b \neq 0, 12$ $a \neq 1, 16$
c	$5x + 15 = 3x - 4$ or $x + 3 = \frac{3x}{5} - \frac{4}{5}$ e.g. $5x - 3x = -4 - 15$	$-\frac{19}{2}$ oe	3	M1 for removing bracket in a correct equation or dividing all terms by 5 in a correct equation M1 ft from $ax + b = cx + d$ for correctly isolating terms in x on one side of equation and constant terms on the other side A1 dep on at least M1
d (i)		$(x - 4)(x + 6)$	2	M1 for $(x + a)(x + b)$ where either $ab = -24$ or $a + b = +2$ e.g. $(x - 6)(x + 4)$ A1
(ii)		4, -6	1	B1 cao or ft from any $(x + p)(x + q)$
4 a (i)		1, 2, 3, 4, 6, 12	1	B1 cao
(ii)		1, 3, 5, 7, 9, 10, 11	1	B1 cao
b		Yes with reason	1	B1 e.g. no numbers in both A and C or A and C do not intersect or A and C do not overlap or A and C are mutually exclusive
c		$\frac{10}{12}$ oe	2	M1 for $12 - 2 (=10)$ or $\frac{a}{12}$ with $a < 12$ or 10 and 12 used with incorrect notation E.g. 10 : 12 A1 for $\frac{10}{12}$ oe or 0.83(3...) or 83(3..)%

Question	Working	Answer	Mark	Notes	
5 a		80 000	1	B1	
b	$0.5 \times 10^{5-8}$ or 0.0005 or 5×10^n or 5.0×10^n	5×10^{-4}	2	M1 A1 for 5×10^{-4} or 5.0×10^{-4} SC : B1 for $\frac{1}{2000}$ or $\frac{1}{2 \times 10^3}$	
6	$9.7^2 + 3.5^2 (=106.34)$ $\sqrt{9.7^2 + 3.5^2}$ or $\sqrt{"106.34"} (=10.3\dots)$ $\pi \times "10.3\dots"$ or $2 \times \pi \times \frac{"10.3\dots"}{2}$	32.4	4	M1 M1 M1 dep on M2 A1 for answer in range 32.3 – 32.41	M1 for the use of MN and a correct angle (70.1... or 70.2, 19.8...) in a correct trig statement eg $\cos 70.2 = \frac{3.5}{MN}$ M1 for a complete method to find MN eg $MN = \frac{3.5}{\cos 70.2} (=10.3\dots)$

Question	Working	Answer	Mark	Notes	
7 a	$\frac{4}{100} \times 160\ 000 \text{ oe} (=6400)$	141 558	3	M1	M2 for $160\ 000 \times 0.96^3$ or $160\ 000 \times 0.96^4$ (=135 895.44..)
	$\frac{4}{100} \times (160\ 000 - "6400") (= 6144)$ $\frac{4}{100} \times (160\ 000 - "6400" - "6144") (= 5898.24)$ $160\ 000 - "6400" - "6144" - "5898.24"$			M1 for a complete method (condone 4 years rather than 3)	If not M2 then award M1 for $160\ 000 \times 0.96$ (=153 600) or $160\ 000 \times 0.96^2$ (=147 456)
				accept $(1 - 0.04)$ in place of 0.96 throughout	
				A1 for 141 557.76 - 141 558	SC If no other marks gained, award B1 for $160\ 000 \times 0.12 \text{ oe} (=19\ 200)$ or $160\ 000 \times 0.88 \text{ oe} (=140\ 800)$ or an answer of 140 800 or an answer of in the range 179 978 – 179 978.24
b	E.g. $252\ 000 \div 1.05$	240 000	3	M2 If not M2 then M1 for $x \times 1.05 = 252\ 000$ or $252\ 000 \div 105 \text{ oe}$	A1 NB: An answer of 239 400 scores M0 M0 A0

Question	Working	Answer	Mark	Notes
8 a (i)		3×7^3	1	B1 for 3×7^3 oe or 1029
(ii)		$2^3 \times 3^5 \times 5 \times 7^4$	1	B1 for $2^3 \times 3^5 \times 5 \times 7^4$ oe or 23 337 720
b		4, 2, 1	2	M1 for $r = 1$ or for $p = 4$ and $q = 2$ or correct representation of C in terms of prime factors on a Venn diagram
				A1

Question	Working	Answer	Mark	Notes
9	<p>E.g. $\tan 72 = \frac{12.8}{a}$ or $\tan(90 - 72) = \frac{o}{12.8}$ or $\sin 72 = \frac{12.8}{h}$ or $\cos(90 - 72) = \frac{12.8}{h}$</p> <p>E.g. (shortest side) = $\frac{12.8}{\tan 72}$ or $12.8 \tan(90 - 72)$ or $4.15(89\dots)$ or 4.16 or (hypotenuse =) $\frac{12.8}{\sin 72}$ or $\frac{12.8}{\cos(90 - 72)}$ or $13.4(58\dots)$ or 13.5</p> <p>One of (shortest side =) $\frac{12.8}{\tan 72}$ or $12.8 \tan(90 - 72)$ or $4.15(89\dots)$ or 4.16 or $\sqrt{13.4\dots^2 - 12.8^2}$ AND One of (hypotenuse =) $\frac{12.8}{\sin 72}$ or $\frac{12.8}{\cos(90 - 72)}$ or $13.4(58\dots)$ or 13.5 or $\sqrt{12.8^2 + 4.15\dots^2}$</p> <p>$5 \times ("13.4(58\dots)" - "4.15(89\dots)") + 5 \times 12.8$ or $5 \times ("13.4\dots" + "4.15\dots" + 12.8) - 10 \times "4.15\dots"$</p>	110	5	<p>M1 substitutes correctly into a trig ratio (including the Sine rule)</p> <p>M1 for a complete method to find one side of the triangle</p> <p>M1 for a complete method to find both missing sides of triangle NB Could use Pythagoras's theorem with side found – must be a complete correct method</p> <p>M1 for method to use found lengths to find perimeter</p> <p>A1 for answer in range 110 - 111</p>

Question	Working	Answer	Mark	Notes
10 a	Readings from graph at cf 20 and cf 60 eg. readings of 103 and 123	20.5	2	M1 A1 for answer in range 19 – 21
b	Reading from graph from time = 120 (=55) or 80 – 55 (=25) $0.35 \times 80 (=28)$ or e.g. $\frac{80 - "55"}{80} \times 100$ oe (=31(.25)) or $\frac{"55"}{80} \times 100$ oe (= 68(.75))	No with correct figures	3	M1 accept reading in range 55 – 56 M1 accept a value in the range 30 – 31.25 or a value in the range 68 – 70 for this mark unless clearly from incorrect working A1 eg. No with 28 and 25 or No with 31.25% (accept value in range 30% – 31.25%) or No with 68.75% and 65% (accept value in range 68% – 70%)
	Alternative scheme $0.65 \times 80 (=52)$ Reading from graph from cf = 52 (=118) or Reading from graph from time = 120 (=55)	No with correct figures	3	M1 M1 accept reading in range 55 – 56 A1 eg. No with 118 (minutes) or No with 52 and 55

Question	Working	Answer	Mark	Notes
11 a	$2x^2 - x + 6x - 3$ or $2x^2 + 5x - 3$ or $x^2 + 3x - 5x - 15$ or $x^2 - 2x - 15$ or $2x^2 - 10x - x + 5$ or $2x^2 - 11x + 5$ eg. $2x^3 + 5x^2 - 3x - 10x^2 - 25x + 15$ or $2x^3 - 4x^2 - 30x - x^2 + 2x + 15$ or $2x^3 - 11x^2 + 5x + 6x^2 - 33x + 15$	$2x^3 - 5x^2 - 28x + 15$	3	M1 for expansion of any 2 of the 3 brackets (at least 3 of 4 terms correct) M1 (dep) ft for at least half of their terms correct in second expansion (the correct number of terms must be present) A1
	Alternative scheme			
	$2x^3 - 10x^2 - x^2 + 5x + 6x^2 - 30x - 3x + 15$	$2x^3 - 5x^2 - 28x + 15$	3	M2 for a complete expansion with 8 terms present, at least 4 of which must be correct A1

Question	Working	Answer	Mark	Notes
11 b	$\frac{-6 \pm \sqrt{96}}{6} \text{ or } \frac{-6 \pm \sqrt{6^2 - -60}}{6}$ <p>Accept $9.79 - 9.8(0)$ in place of $\sqrt{96}$</p> <p>NB: denominator must be 2×3 or 6 and there must be evidence for correct order of operations in the numerator</p>	0.633, -2.63	3	<p>M2 If not M2 then award M1 for $\frac{-6 \pm \sqrt{6^2 - 4 \times 3 \times -5}}{2 \times 3}$</p> <p>condone one sign error in substitution;</p> <p>allow evaluation of individual terms e.g 36 in place of 6^2</p> <p>A1 dep on M1 for answers in range 0.63 to 0.633, -2.63 to -2.633</p> <p>Award M2A1 for correct answer with correct working that would gain at least M1</p>
	<p>Alternative scheme</p> <p>e.g $3((x + 1)^2 - 1) - 5 (= 0)$ or</p> $(x+1)^2 - 1 - \frac{5}{3} (= 0)$ <p>$(x =) -1 \pm \sqrt{\frac{5}{3} + 1}$ oe</p>	0.633, -2.63	3	<p>M1 for completing the square</p> <p>M1 for correct method to isolate x</p> <p>A1 dep on M1 for answer in range 0.63 to 0.633, -2.63 to -2.633</p> <p>Award M2A1 for correct answer with correct working that would gain at least M1</p>

Question	Working	Answer	Mark	Notes
12 (a)		3, 4	1	B1
(b)		see graph at end of mark scheme	3	<p>B3 for correct region identified</p> <p>If not B3 then award</p> <p>B2 for $x + y = 4$ drawn (with no additional lines drawn) and a region identified that satisfies at least 3 of the 5 given inequalities</p> <p>If not B2 then award</p> <p>B1 for line $x + y = 4$ drawn</p> <p>NB. May shade wanted or unwanted regions; lines may be solid or dashed</p>
13 a (i)		54	1	B1 cao
(ii)		<u>angle at centre is twice angle at circumference</u>	1	B1 dep on B1 in (a)(i) accept alternative reasons eg. angle at circumference is half the angle at the centre
b (i)		27	1	B1 ft from (a)(i) for $\frac{54}{2}$
(ii)		<u>alternate segment</u> theorem	1	B1 dep on B1 in (b)(i) accept alternative reason angle between <u>tangent</u> and <u>radius</u> is 90° If answer for (b)(i) is ft from (a)(i) then reason must be angle between <u>tangent</u> and <u>radius</u> is 90°

Question	Working	Answer	Mark	Notes
14 a		-6.5 oe	1	B1
b	$4y = 3x - 5$ or $4x = 3y - 5$	$\frac{4x+5}{3}$ oe	2	M1 A1
c	$\sqrt{19-3}$ oe or $f(4)$ or $\frac{3\sqrt{19-3}-5}{4}$ or $\frac{3\sqrt{19-x}-5}{4}$ oe	1.75 oe	2	M1 A1 for 1.75oe (and no other solution)
d		$x > 19$	2	B2 for $(x) > 19$ or an equivalent statement in words If not B2 then award B1 for $(x) \geq 19$

Question	Working	Answer	Mark	Notes
15 a	<p>E.g. $\left(\frac{y^8}{256x^{20}}\right)^{\frac{1}{4}}$ or $\left(\frac{4x^5}{y^2}\right)^{-1}$ or $\frac{x^{-5}}{4y^{-2}}$ or $\frac{1}{4}x^{-5}$</p> <p>or $k \frac{y^a}{x^b}$ or $\frac{ky^a}{x^b}$ with 2 of $k = \frac{1}{4}$ oe, $a = 2, b = 5$</p> <p>or $\frac{y^a}{mx^b}$ with 2 of $m = 4, a = 2, b = 5$</p>	$\frac{y^2}{4x^5}$	2	M1 for a correct first step leading to a correct partially simplified expression
b	$\frac{1}{(3x-5)(3x+5)} - \frac{1}{2(3x+5)}$ <p>E.g. $\frac{2}{2(3x-5)(3x+5)} - \frac{1(3x-5)}{2(3x-5)(3x+5)}$ or</p> $\frac{6x+10}{(9x^2-25)(6x+10)} - \frac{9x^2-25}{(9x^2-25)(6x+10)}$	$\frac{7-3x}{2(3x-5)(3x+5)}$	3	<p>M1 indep for $(3x+5)(3x-5)$</p> <p>M1 for two correct fractions with a common denominator if there is any expansion at this stage then it must be correct</p> <p>A1 accept equivalents eg. $\frac{7-3x}{18x^2-50}$</p>
	<p>Alternative scheme</p> $\frac{6x+10}{(9x^2-25)(6x+10)} - \frac{9x^2-25}{(9x^2-25)(6x+10)}$	$\frac{7-3x}{2(3x-5)(3x+5)}$	3	M1 for two correct fractions with a common denominator

$$\frac{(7-3x)(3x+5)}{(9x^2-25)(6x+10)}$$

- M1 Numerator expanded and then factorised correctly
A1 accept equivalents

Question	Working	Answer	Mark	Notes
16	$1 - \frac{98}{125} \left(= \frac{27}{125} \right)$ or 0.216 or $125 - 98 (= 27)$ $\sqrt[3]{\frac{27}{125}} \left(= \frac{3}{5} \right)$ or $\sqrt[3]{\frac{125}{27}} \left(= \frac{5}{3} \right)$ $1 - \frac{3}{5}$ or $h - \frac{3}{5}h$ oe	$\frac{2}{5}h$ oe	4	M1 M1 for the length scale factor may be seen as a ratio E.g. 3 : 5 M1 A1 for $\frac{2}{5}h$ oe (may not be simplified)
	Alternative scheme $\frac{1}{3}\pi r^2 h - \frac{1}{3}\pi (kr)^2 kh = \frac{98}{125} \times \frac{1}{3}\pi r^2 h$ oe $k = \frac{3}{5}$ $1 - \frac{3}{5}$ or $h - \frac{3}{5}h$ oe	$\frac{2}{5}h$ oe	4	M1 sets up an equation using scale factor M1 for the length scale factor M1 A1 for $\frac{2}{5}h$ oe (may not be simplified)

Question	Working	Answer	Mark	Notes
17 a	$\overrightarrow{BC} = \begin{pmatrix} -2 \\ -7 \end{pmatrix} + \begin{pmatrix} 10 \\ 11 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \end{pmatrix}$ $\begin{pmatrix} 5 \\ 8 \end{pmatrix} + \begin{pmatrix} 8 \\ 4 \end{pmatrix} \text{ or } \begin{pmatrix} 10 \\ 11 \end{pmatrix} + \begin{pmatrix} 3 \\ 1 \end{pmatrix}$	(13, 12)	3	M1 or coordinates $(5 - 2, 8 - 7)$ ($= (3, 1)$) assigned to A (may be seen in vector form) or $(13, y)$ or $(x, 12)$ given as coordinates for C M1 for coordinates $(5 - 2 + 10, 8 - 7 + 11)$ assigned to C A1
b	e.g. $\begin{pmatrix} 63 \\ 211 \end{pmatrix} - \begin{pmatrix} 5 \\ 8 \end{pmatrix} = \begin{pmatrix} 58 \\ 203 \end{pmatrix}$ with e.g. “58” \div 2 ($= 29$) and “203” \div 7 ($= 29$) OR e.g. $\begin{pmatrix} 63 \\ 211 \end{pmatrix} - \begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 60 \\ 210 \end{pmatrix}$ with e.g. “60” \div 2 ($= 30$) and “210” \div 7 ($= 30$)	Proof	2	M1 may work with A and E , in which case may need to ft for method mark from (a) A1 proof with justification eg. $\overrightarrow{BE} = 29 \begin{pmatrix} 2 \\ 7 \end{pmatrix}$ (or $\overrightarrow{AE} = 30 \begin{pmatrix} 2 \\ 7 \end{pmatrix}$) with ABE is a straight line or $210 \div 60 = 3.5$ and $7 \div 2 = 3.5$ so ABE is a straight line

Question	Working	Answer	Mark	Notes	
18		(3, -1)	1	B1	
		(-2, -0.5) oe	1	B1	
b		e.g. 2, 90, 1	3	B3 for all 3 correct values e.g. 2, 90, 1 or -2, 270, 1 If not B3 then B2 for any 2 correct values NB. 2 values from 2, 90, 1 OR 2 values from -2, 270, 1 NB: accept a value of $(90 + 360n)$ in place of 90 or $(270 + 360n)$ in place of 270 where n is an integer (could be negative)	

Question	Working	Answer	Mark	Notes
19	$\frac{1}{4} \times \frac{2}{5} \left(= \frac{2}{20} \right) \text{ or } \frac{3}{4} \times \frac{3}{5} \left(= \frac{9}{20} \right)$ $\text{or } \frac{1}{4} \times \frac{3}{5} \left(= \frac{3}{20} \right) \text{ or } \frac{3}{4} \times \frac{2}{5} \left(= \frac{6}{20} \right)$ $\frac{1}{4} \times \frac{2}{5} + \frac{3}{4} \times \frac{3}{5} \left(= \frac{11}{20} \right) \text{ or } 1 - \left(\frac{1}{4} \times \frac{3}{5} + \frac{3}{4} \times \frac{2}{5} \right) \left(= \frac{11}{20} \right)$ $\text{"} \frac{11}{20} \text{"} \times \text{"} \frac{11}{20} \text{"} \text{ or } \left(\text{"} \frac{2}{20} \text{"} + \text{"} \frac{9}{20} \text{"} \right)^2$	$\frac{121}{400} \text{ oe}$	4	M1 for any one correct probability M1 for a complete method M1 A1 for $\frac{121}{400}$ oe or 0.3025 or 30.25%

20	$y = \frac{2}{3}x + \frac{12}{3}$ or $y = \frac{2x+12}{3}$ or gradient = $\frac{2}{3}$ (gradient of perpendicular line =) $-\frac{3}{2}$ oe or $\frac{-1}{\frac{2}{3}}$ oe $37 = -\frac{3}{2}x + 4 + c$ or $c = 43$ $y = -\frac{3}{2}x + 43$	$3x + 2y = 86$	5	M1 M1 ft from their gradient M1 (dep on previous M1) and ft from their gradient A1 correct equation (equation in any form) A1 for $3x + 2y = 86$ oe for a simplified equation with integer coefficients e.g. $3x = 86 - 2y$	M1 for $y - 37 = -\frac{3}{2}(x - 4)$	A1 for $y - 37 = -\frac{3}{2}(x - 4)$
	Alternative scheme $2y = -3x + c$ oe $2 \times 37 = -3 \times 4 + c$	$3x + 2y = 86$	5	M2 M1 A2 for $3x + 2y = 86$ oe for a simplified equation with integer coefficients e.g. $3x = 86 - 2y$		