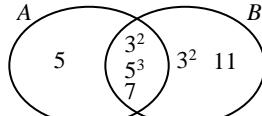
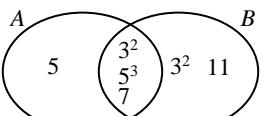


International GCSE Maths					
Apart from Q2, 17, 18d, 20, & 24 (where the mark scheme states otherwise) the correct answer, unless obtained from an incorrect method, should be taken to imply a correct method					
Question		Working	Answer	Mark	Notes
1	(a)		$x > -3$	1	B1 Accept $-3 < x$
	(b)	$4y - y \leq 8 + 13$		2	M1 Arranging y 's on one side and the numbers on the other side. (allow $4y - y = 8 + 13$ oe or $4y - y < 8 + 13$ oe or $4y - y > 8 + 13$ oe or $4y - y \geq 8 + 13$ oe) Allow $y \leq 21/3$
			$y \leq 7$ oe	A1	
					Total 3 marks

2		$\frac{17}{3}(-)\frac{11}{4}$ or $5\frac{8}{12}(-)2\frac{9}{12}$ $\frac{68}{12} - \frac{33}{12}$ or $4\frac{20}{12} - 2\frac{9}{12}$ $\frac{35}{12} = 2\frac{11}{12}$ Alt: $3(+)(\frac{2}{3} - \frac{3}{4})$ $3(+)(\frac{8}{12} - \frac{9}{12})$ $3 - \frac{1}{12} = 2\frac{11}{12}$ Alt: $4\frac{5}{3}(-)2\frac{3}{4}$ $2(+)(\frac{5}{3} - \frac{3}{4})$ $2(+)(\frac{20}{12} - \frac{9}{12})$ $= 2\frac{11}{12}$		3	M1 M1 A1 M1 M1 A1 M1 M1 A1	Sight of $\frac{17}{3}$ and $\frac{11}{4}$ or $5\frac{8}{12}$ and $2\frac{9}{12}$ or $\frac{68n}{12n} - \frac{33n}{12n}$ Dep on M2 Dep on M2 Dep on M2 Dep on M2
						Total 3 marks



Question		Working	Answer	Mark	Notes	
3	(a)		-5, 5, 5, -5	2	B2	All 4 correct values If not B2 then B1 for 2 or 3 correct values
	(b)		Fully correct curve	2	M1 A1	Plotting at least 6 points correctly from their table dep on B1 in part(a) Do not accept horizontal line at top of curve or straight line segments
						Total 4 marks

4	(a)	$40 \div 16 \times 12$ oe	30	2	M1 A1	$40 \times \frac{12}{16}$ oe
	(b)	$525 \div 100^2$	0.0525 oe	2	M1 A1	$\frac{525}{100^2}$ Accept 5.25×10^{-2}
						Total 4 marks

5			$(x + 4)(x - 9)$	2	M1 A1	For $(x + a)(x + b)$ where $ab = -36$ and a and b are integers Ignore extension to roots $x = -4$ & 9
						Total 2 marks

6		P(mint =) $1 - (0.35 + 0.32 + 0.12) \{= 0.21\}$ P(strawberry or mint =) $0.32 + "0.21"$	0.53 oe	3	M1 M1 A1	Or a correct equation summing to 1 Dep Allow 0.53/1
						Total 3 marks

7		$55 \div (6 + 3 + 2) \{= 5\}$ $(6 \times "5") - (2 \times "5")$	20	3	M1 M1 A1	Or $\frac{6}{11} \times 55 \ (= 30)$ or $\frac{2}{11} \times 55 \ (= 10)$ Or M2 for Won = 30 and Lost = 10 (can be seen in a ratio 30 : 15: 10)
						Total 3 marks

Question		Working	Answer	Mark	Notes	
8	(a)		7875	2 A1	M1	$3^2 \times 5^3 \times 7$ oe or correct Venn diagram
	(b)		3 898 125	2 A1	M1	$3^4 \times 5^4 \times 7 \times 11$ oe or correct Venn diagram
						Total 4 marks

9	(a)		8.4×10^5	1	B1	
	(b)	$\frac{60000000}{0.08}$ or 750000000 oe (e.g 0.75×10^9)	7.5×10^8	2 A1	M1 A1	M1 for 60000000 or 0.08
						Total 3 marks

10		150000×0.82^3		3 A1	M2 A1	If not M2 then M1 for 1st year e.g $150000 \times 0.82 (= 123000)$ or $150000 \times 0.18 (= 27000)$ SC B1 for $150000 \times 1.18 (= 177000)$ or $150000 \times 1.18^3 (= 246454.8)$ or $150000 \times 0.54 (= 81000)$ or $150000 \times 0.46 (= 69000)$ Accept 82705.2
			82705			Total 3 marks

11		Gradient = $(-4 \div 2)$ oe $y = -2x - 1$ oe		3 A2	M1 A2	Correct method to work out the gradient (\pm) accept $4 \div 2$ oe or " $m = 2$ " If not A2 then A1 for $L = -2x - 1$ or $-2x - 1$ or $y = 2x - 1$ or $y = -2x + c$
						Total 3 marks

Question		Working	Answer	Mark	Notes	
12		$\sin 32 = \frac{BD}{3.1} \text{ oe}$ $(BD =) 3.1 \times \sin 32 (= 1.6427\dots)$ $\cos 42 = \frac{"3.1\sin 32"}{AB} \text{ oe} \quad \text{or} \quad \frac{AB}{\sin 90} = \frac{"3.1 \sin 32"}{\sin 48} \text{ oe}$ $AB = \frac{"3.1\sin 32"}{\cos 42} \text{ or } AB = \frac{"3.1 \sin 32"}{\sin 48}$	2.21	5	M1 M1 M1 M1	A correct calculation involving BD Accept 1.6 or better Dep or $(AD =) "1.6\dots \times \tan 42 \{ = 1.479\}$ Or $(AB =) \sqrt{"1.479"\^2 + "1.6427"\^2}$ 2.21053... (Accept 2.2 → 2.22)
				A1		Total 5 marks

13	(a)	Plotting points from table at ends of interval $(40, 6), (50, 20), (60, 56), (70, 84), (80, 95), (90, 100)$ Points joined with curve or line segments	Correct cf diagram	2	M1 A1	$\pm 1/2$ sq (at least 5 points plotted correctly) Or <u>all</u> points plotted consistently within each interval at the correct heights Accept cf graph which is not joined to (30,0)
	(b)	Use of graph at 50	58 – 59	2	M1 A1	Use of graph at 50 walkers No working shown and answer is within 58 – 59 award M1A1
	(c)	86 or 87 or 88 indicated on graph or stated $100 - "86"$ or $100 - "87"$ or $100 - "88"$	$\frac{12}{100} \text{ oe } \frac{13}{100} \text{ oe } \frac{14}{100}$	3	M1 M1 A1	Use of their graph at 72 minutes Dep e.g. 12, 13 or 14 walkers $0.12 \rightarrow 0.14$ inc, oe
						Total 7 marks

14	(a)	x^9y^6	x^9y^6	2	B1B1	Allow B1 if $(x^3y^2)^3$ or $(x^{36}y^{24})^{0.25}$ seen on answer line
	(b)	$3^n = \frac{3^x}{3^{2y}}$	$n = x - 2y$	2	M1 A1	for a correct first step e.g. 3^{2y} or 3^{-2y}
						Total 4 marks

Question		Working	Answer	Mark	Notes	
15		$ABD = 98^\circ \div 2 (= 49^\circ)$ or $ABC = 90^\circ$ <u>Angle at centre / middle is twice angle at circumference</u> <u>Angle in a semicircle / from a diameter is 90° / right angle</u> $DBC = (90 - 49) = 41$		4	M1 B1 B1 A1	Correct angle stated or seen on diagram Dep M1 Dep M1 Correct answer + no reasons = M1A1
		Alt: $180 - 98 (= 82^\circ)$ $OAD = 82 \div 2 (= 41^\circ)$ Base / bottom angles in an <u>isosceles triangle</u> are equal $DBC = 41^\circ$ <u>Angles in the same segment / from the same chord (DC) are equal</u>	41°		M1 B1 B1 A1	Correct angle stated or seen on diagram Dep M1 Dep M1 Correct answer + no reasons = M1A1
		Alt: $DOC = 180 - 98 (= 82^\circ)$ <u>Angles on a straight line = 180°</u> $DBC = 41^\circ$ <u>Angle at centre / middle is twice angle at circumference</u>	41°		M1 B1 B1 A1	Correct angle stated or seen on diagram Dep M1 Dep M1 Correct answer + no reasons = M1A1
					Total 4 marks	

16	(a)	$y = \frac{k}{x^2}$ condone proportion symbol in place of = $16 = \frac{k}{1.5^2}$ or $9 = \frac{k}{2^2}$ or $4 = \frac{k}{3^2}$ or $2.25 = \frac{k}{4^2}$		3	M1 M1 A1	Setting up a correct equation " $k \neq 1$ " Using the values from the table to find the value of the constant or " $k = 36$ " $\frac{36}{x^2} = M2 A0$
	(b)	$x^2 = \frac{36}{144}$ or $x = \sqrt{\frac{36}{144}}$			M1	Substituting $y = 144$ into the correct equation and making x^2 or x the subject.
			0.5 oe	2	A1	cao
					Total 5 marks	

Question		Working	Answer	Mark	Notes	
17		$(\text{Term } n =) \frac{1}{2}n(n + 1) \text{ or}$ $(\text{Term } n + 1 =) \frac{1}{2}(n + 1)(n + 2)$ $\frac{1}{2}n(n + 1) + \frac{1}{2}(n + 1)(n + 2)$ $\frac{1}{2}(n + 1)(n + n + 2) = \frac{1}{2}(n + 1)(2n + 2) \text{ or}$ $\frac{1}{2}n^2 + \frac{1}{2}n + \frac{1}{2}n^2 + \frac{1}{2}n + n + 1 \rightarrow n^2 + 2n + 1$	$(n + 1)^2 \text{ shown}$	4	M1 M1 M1 A1	Algebraic representation of one of the two consecutive terms in sequence Adding two consecutive terms Factorisation or multiplying out correctly <u>to get to $n^2 + 2n + 1$</u> Dep on M3
						Total 4 marks

18	(a)		$\frac{3}{4} \text{ oe}$	1	B1	
	(b)	$\frac{x-5}{4(x-5)-3}$	$\frac{x-5}{4x-23}$	2	M1 A1	cao
	(c)	$y = \frac{x}{4x-3}$ or $x = \frac{y}{4y-3}$ $y(4x - 3) = x$ or $x(4y - 3) = y$ $4xy - 3y = x$ or $4xy - 3x = y$ $4xy - x = 3y$ or $4xy - y = 3x$ $x(4y - 1) = 3y$ or $y(4x - 1) = 3x$	$\frac{3x}{4x-1} \text{ oe}$	3	M1 M1 A1	Moving the denominator to the other side of the equation Factorising the variable on one side in a correct expression
	(d)	Tangent drawn at $x = -0.5$ (G =) $18 \div 3 \text{ oe}$	5 → 7	3	M1 M1 A1	Drawing a tangent at $x = -0.5$ Correct method to work out the gradient of the tangent at $x = -0.5$ or $x = +0.5$ Dep on 1 st M1 SC B1 B1 for drawing a tangent at $x = +0.5$ and gradient = -3 → -4
						Total 9 marks

Question		Working	Answer	Mark	Notes	
19		$\frac{25}{2}\pi = \pi r^2 \times \frac{80}{360}$ $r = 7.5$ $(APB) = 2 \times \pi \times "7.5" \times \frac{80}{360} (= 10.471)....$ $(APB) = 10.471.... (=10\pi/3)$ $(AB^2) = "7.5"^2 + "7.5"^2 - (2 \times "7.5" \times "7.5" \times \cos 80)$ $\text{or } \frac{AB}{\sin 80} = \frac{"7.5"}{\sin 50}$ $\text{or } (AB) = 2 \times "7.5" \times \sin 40$ $(AB) = 9.6418$ $"9.6418" + "10.4719"$		6	M1 A1 M1 ft M1 ft M1 ft 20:T AT	Equation of sector equal to $\frac{25\pi}{2}$ or a calculation that leads to r or r^2 Dep on 1 st M1 Accept 10.5 or better Dep on 1 st M1 Correct equation to find AB ($= 9.6$) or AB^2 ($= 93$ or better) must use a clearly identified radius value Dep on 2 nd and 3 rd method marks awrt 20.1
						Total 6 marks

20		3.455 or 3.465 or 6.25 or 6.35 $\frac{6 \times 3.465}{6.25 - 3.465}$	7.46	3	M1 M1 A1	Accept 3.4649 for 3.465 or 6.349 for 6.35 $\frac{6 \times \text{UB}_a}{\text{LB}_b - \text{UB}_a}$ where $3.46 < \text{UB}_a \leq 3.465$ and $6.25 \leq \text{LB}_b < 6.3$ Dep M2 Accept 7.46499 ...
						Total 3 marks

21		$(LSF) = \sqrt{240 \div 540}$ or $\frac{2}{3}$ or $\frac{3}{2}$ or 1.5 or 3:2 or 2:3 $\left(\frac{2}{3}\right)^3 \times 2025$ oe accept 0.066 or better for 2/3	600	3	M1 M1 A1	Full method leading to correct answer
						Total 3 marks

Question		Working	Answer	Mark	Notes	
22		$-2(x^2 - 6x) + 5$ or $-2(x^2 - 6x - 2.5)$ $-2[(x - 3)^2 - 9 - 2.5]$ or $-2[(x - 3)^2 - 9] + 5$ $-2[(x - 3)^2 - 11.5]$ or $-2(x - 3)^2 + 18 + 5$ Alt: $a + b(x^2 \pm 2cx + c^2)$ $2bc = 12$ or $a + bc^2 = 5$ or $b = -2$ $2x - 2x c = 12$ or $c = -3$ $a + -2 \times (-3)^2 = 5$ or $a = 23$ seen	$23 - 2(x - 3)^2$ $23 - 2(x - 3)^2$	4	M1 M1 M1 A1 M1 M1 M1 M1	Factorising by extracting - 2 in a correct expression Correct expression equivalent to $5 + 12x - 2x^2$ Correct expression equivalent to $5 + 12x - 2x^2$ Award full marks if a, b, and c are correctly stated and $23 - 2(x - 3)^2$ is not stated anywhere. SC B3 for $23 - 2(3 - x)^2$ SC B2 for $-2(x - 3)^2 + \text{constant}$ or $23 - 2(x + \text{constant})^2$ SC B1 for $-2(x + 3)^2 + \text{constant}$ Multiplying out expression correctly Equating coefficients or stating value of b Method to calculate c Method to calculate a SC B3 for $23 - 2(3 - x)^2$
						Total 4 marks

Question	Working	Answer	Mark	Notes
23	$360 = (10 \times 10) + 4 \times 0.5 \times 10 \times "h" \text{ oe}$ $h = 13$		M1 A1	Finding the perpendicular height of a triangular face
	$AC = \sqrt{13^2 + 5^2} = (13.93 \text{ or } \sqrt{194}) \text{ or}$ $AO = \sqrt{13^2 - 5^2} = (12) \text{ or}$ $OC = (\sqrt{10^2 + 10^2}) \div 2 = (7.07 \text{ or } 5\sqrt{2}) \text{ or}$ $EC \text{ (oe)} = \sqrt{10^2 + 10^2} = (14.14 \text{ or } 10\sqrt{2})$		M2	Finding the accurate length of two sides relevant to finding correct angle. M2 for two sides found or M1 for one side. 1dp rounded or truncated.
	$\tan^{-1}\left(\frac{12}{7.07}\right) \text{ or } \cos^{-1}\left(\frac{7.07}{13.93}\right) \text{ or } \sin^{-1}\left(\frac{12}{13.93}\right)$ or $\cos^{-1}\left(\frac{13.93^2 + 7.07^2 - 12^2}{2 \times 13.93 \times 7.07}\right)$ or $\cos^{-1}\left(\frac{13.93^2 + 14.14^2 - 13.93^2}{2 \times 13.93 \times 14.14}\right)$	59.5°	M1 A1	A correct trigonometric expression to find correct angle Accept $\tan \theta = \left(\frac{12}{7.07}\right)$ etc Accept $59.4^\circ - 59.7^\circ$
				Total 6 marks

Question	Working	Answer	Mark	Notes
24	$\frac{x-4}{x} \times \frac{x-5}{x-1} = 0.7$ $3x^2 - 83x + 200 (= 0) \text{ oe}$ $\frac{83 \pm \sqrt{83^2 - (4 \times 3 \times 200)}}{2 \times 3} \text{ or } (3x - 8)(x - 25) (=0)$ $\text{or } (x - 83/6)^2 + 200/3 - 83^2/36 (=0)$ Alt: $y = \text{yellow marbles}$ $\frac{y}{y+4} \times \frac{y-1}{y+3} = 0.7$ $3y^2 - 59y - 84 (= 0) \text{ oe}$ $\frac{59 \pm \sqrt{59^2 - (4 \times 3 \times -84)}}{2 \times 3} \text{ or } (3y + 4)(y - 21)$ $\text{or } (y - 59/6)^2 - 84/3 - 59^2/36 (=0)$ $y = 21$ $21+4$	25	5	M2 A1 M1 A1 If not M2 then M1 for either $\frac{x-4}{x}$ or $\frac{x-5}{x-1}$ Rearrangement of their quadratic to the form $ax^2 + bx + c (= 0)$ 1 st step in solving the correct 3 term quadratic Accept 25 only (dep on M3 if using algebra) If not M2 then M1 for either $\frac{y}{y+4}$ or $\frac{y-1}{y+3}$ Rearrangement of their quadratic to the form $ay^2 + by + c (= 0)$ 1 st step in solving the correct 3 term quadratic Accept 25 only (dep on M3 if using algebra) Give full marks if $\frac{21}{25} \times \frac{20}{24} = 0.7$ seen and 1 st M2 scored NB: SC B1 for completing 1st step in solving incorrect 3 term quadratic
		25	A1	Total 5 marks

					Total for Paper: 100 marks
--	--	--	--	--	-----------------------------------