

Write your name here

Surname

Other names

**Pearson Edexcel
International GCSE**

Centre Number

Candidate Number

--	--	--	--

--	--	--	--

Mathematics A

**Level 1/2
Paper 2HR**

Higher Tier

Thursday 7 June 2018 – Morning
Time: 2 hours

Paper Reference
4MA1/2HR

You must have:

Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
 - *there may be more space than you need.*
- **Calculators may be used.**
- You must **NOT** write anything on the formulae page.
Anything you write on the formulae page will gain **NO** credit.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 - *use this as a guide as to how much time to spend on each question.*

Advice

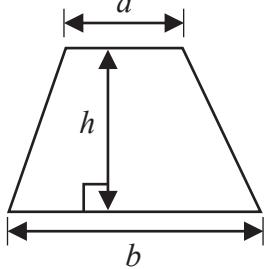
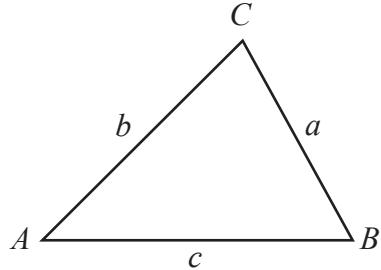
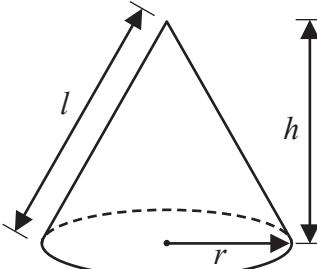
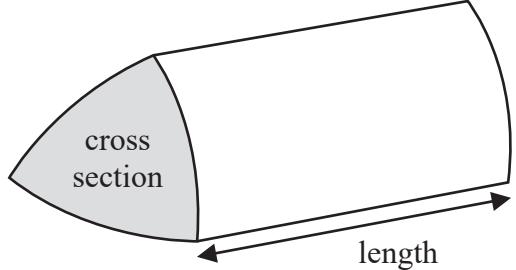
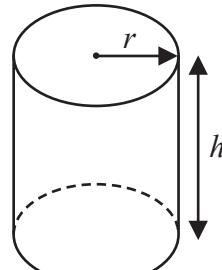
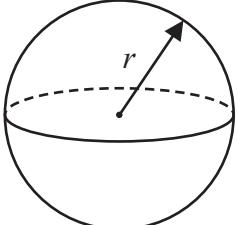
- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Turn over ▶

P59014A

©2018 Pearson Education Ltd.

1/1/1

P 5 9 0 1 4 A 0 1 2 4

Pearson

International GCSE Mathematics
Formulae sheet – Higher Tier

Arithmetic series Sum to n terms, $S_n = \frac{n}{2} [2a + (n - 1)d]$	Area of trapezium $= \frac{1}{2}(a + b)h$
The quadratic equation The solutions of $ax^2 + bx + c = 0$ where $a \neq 0$ are given by: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
Trigonometry 	In any triangle ABC Sine Rule $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ Cosine Rule $a^2 = b^2 + c^2 - 2bc \cos A$ Area of triangle $= \frac{1}{2}ab \sin C$
Volume of cone $= \frac{1}{3}\pi r^2 h$ Curved surface area of cone $= \pi r l$ 	Volume of prism = area of cross section \times length
Volume of cylinder $= \pi r^2 h$ Curved surface area of cylinder $= 2\pi r h$ 	Volume of sphere $= \frac{4}{3}\pi r^3$ Surface area of sphere $= 4\pi r^2$

Answer ALL TWENTY FOUR questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

1 x , 10 and y are three integers written in order of size, starting with the smallest integer.

The mean of x , 10 and y is 11

The range of x , 10 and y is 7

Work out the value of x and the value of y .

$$x = \dots$$

$$y = \dots$$

(Total for Question 1 is 2 marks)

$$\text{pressure} = \frac{\text{force}}{\text{area}}$$

2 A box is put on a table.

The face of the box in contact with the table is in the shape of a rectangle, 2 m by 1.25 m.

The pressure on the table due to the box is 42 newtons/m²

Work out the force exerted by the box on the table.

$$\dots \text{ newtons}$$

(Total for Question 2 is 3 marks)

P 5 9 0 1 4 A 0 3 2 4

3 Behnaz makes candles.

She has 6.3 kilograms of wax and uses it all to make candles.
Each candle Behnaz makes uses 210 grams of wax.

Behnaz sells $\frac{2}{5}$ of the candles for \$13 each.

She then reduces this price by 20% and sells the rest of the candles.

Work out the total amount of money Behnaz gets by selling all the candles she made.

\$.....

(Total for Question 3 is 4 marks)

4 (a) Expand and simplify $3(c - 7) + 2(3c + 4)$

.....
(2)

(b) Expand and simplify $(x + 7)(x - 2)$

.....
(2)

(c) Factorise fully $28y^2 - 21y$

.....
(2)

(d) Solve $\frac{7x - 2}{4} = 3x + 1$

Show clear algebraic working.

$x =$

(3)

(Total for Question 4 is 9 marks)

P 5 9 0 1 4 A 0 5 2 4

5 Abelie flew by plane from Dubai to Rome.

The flight time was 6 hours 42 minutes.

The average speed of the plane was 650 kilometres per hour.

Work out the distance the plane flew.

..... kilometres

(Total for Question 5 is 3 marks)

6 Hiran invests 20 000 rupees in an account for 3 years at 1.5% per year compound interest.

Work out the total amount of money in the account at the end of 3 years.

Give your answer to the nearest rupee.

..... rupees

(Total for Question 6 is 3 marks)

7 (a) Simplify fully $\frac{20x^2y^6}{4x^2y^2}$

.....
(2)

(b) Make e the subject of the formula $h = 3e + f$

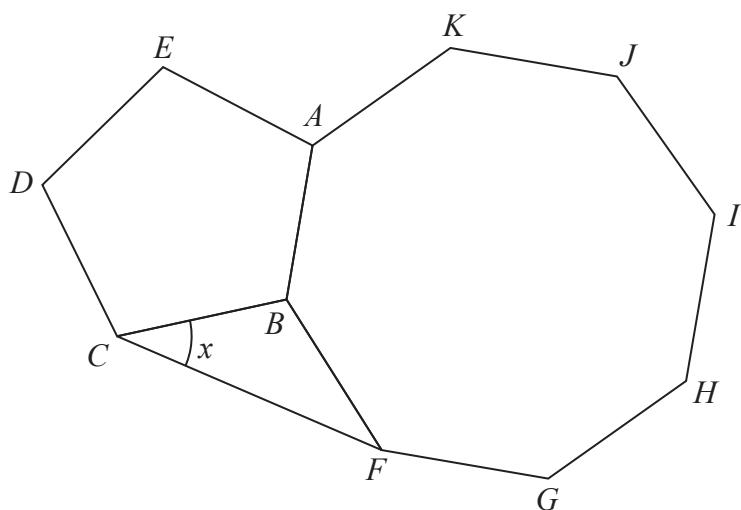
.....
(2)

(Total for Question 7 is 4 marks)

8 From point A , Stanley walks 200 m due east to point B .
From B , he then walks 160 m due south to point C .

Work out the length of AC .

Give your answer correct to 3 significant figures.


..... metres

(Total for Question 8 is 3 marks)

P 5 9 0 1 4 A 0 7 2 4

9

The diagram shows a regular pentagon, $ABCDE$, a regular octagon, $ABFGHIJK$, and an isosceles triangle, BCF .

Work out the size of angle x .

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(Total for Question 9 is 4 marks)

10 $ABCD$ is a trapezium.

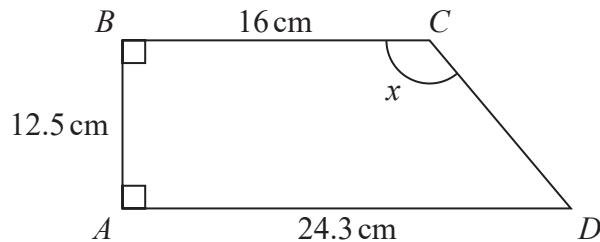


Diagram NOT
accurately drawn

Work out the size of angle x .

Give your answer correct to 1 decimal place.

(Total for Question 10 is 4 marks)

P 5 9 0 1 4 A 0 9 2 4

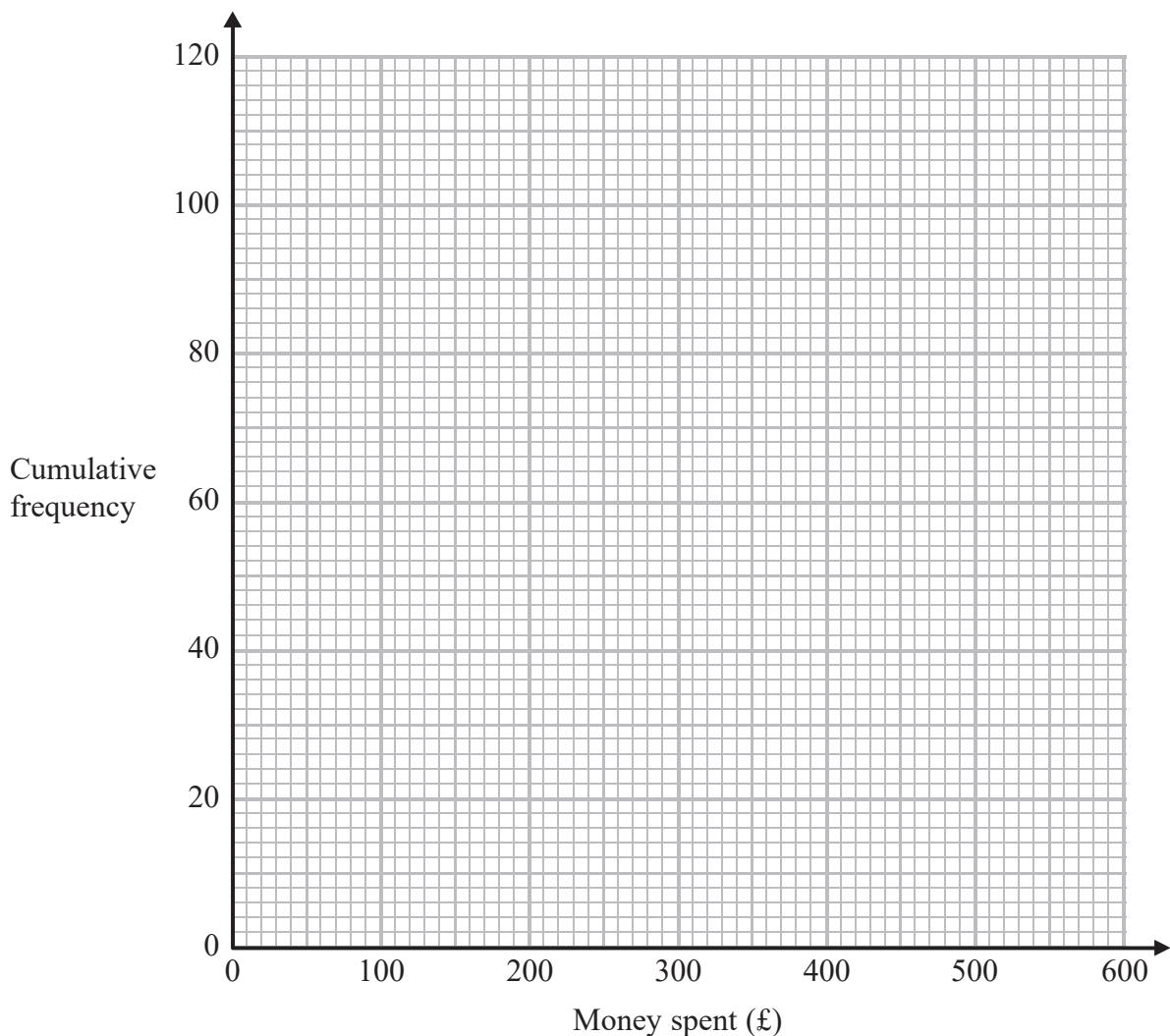
11 The table shows information about the amount of money spent on holiday by each of 120 families.

Money spent (£m)	Frequency
$0 < m \leq 100$	10
$100 < m \leq 200$	36
$200 < m \leq 300$	34
$300 < m \leq 400$	20
$400 < m \leq 500$	15
$500 < m \leq 600$	5

(a) Write down the modal class.

.....
(1)

(b) Complete the cumulative frequency table for the information in the table.


Money spent (£m)	Cumulative frequency
$0 < m \leq 100$	
$0 < m \leq 200$	
$0 < m \leq 300$	
$0 < m \leq 400$	
$0 < m \leq 500$	
$0 < m \leq 600$	

(1)

(c) On the grid, draw a cumulative frequency graph for your table.

(2)

(d) Use your graph to find an estimate for the interquartile range.

£.....

(2)

(e) Use your graph to find an estimate for the number of families that spent more than £450 on holiday.

.....

(2)

(Total for Question 11 is 8 marks)

12

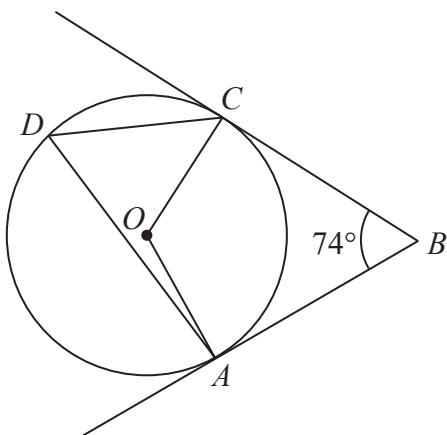


Diagram NOT
accurately drawn

A , C and D are points on a circle, centre O .
 AB and CB are tangents to the circle.

Angle $ABC = 74^\circ$

Work out the size of angle ADC .

Show your working clearly.

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

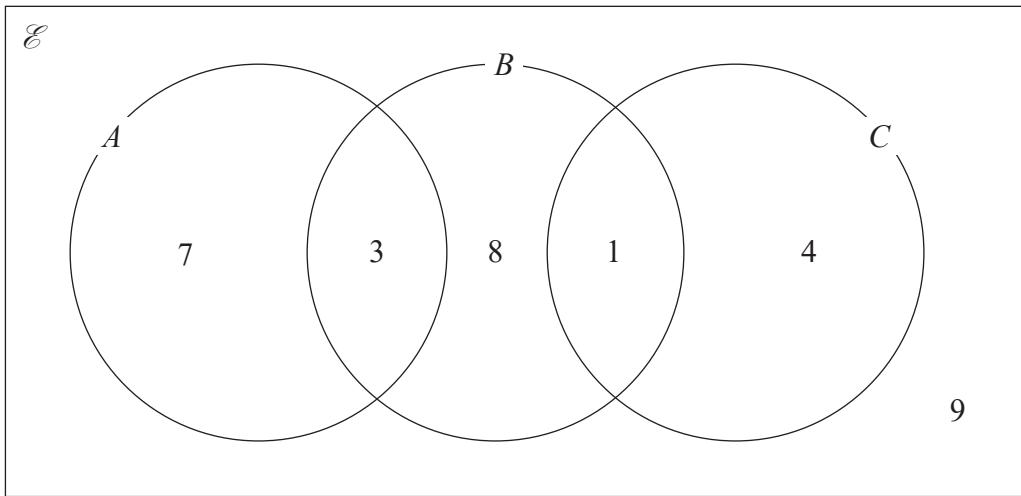
(Total for Question 12 is 3 marks)

13 The straight line L_1 has equation $y = 6 - 2x$
The straight line L_2 is perpendicular to L_1 and passes through the point (4, 7)
Find the coordinates of the point where the line L_2 crosses the x -axis.

(.....,)

(Total for Question 13 is 4 marks)

14 $128 = 4^{2x} \times 2^x$


Work out the value of x .

$x =$

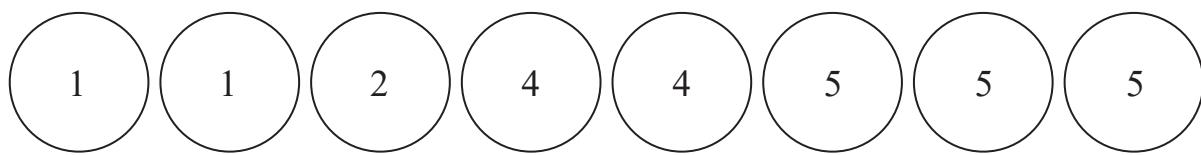
(Total for Question 14 is 3 marks)

15 The Venn diagram shows a universal set, \mathcal{E} , and sets A , B and C .

7, 3, 8, 1, 4 and 9 represent the **numbers** of elements.

Find

(i) $n(A \cup B)$


(ii) $n(A' \cap C)$

(iii) $n(A' \cup B')$

(Total for Question 15 is 3 marks)

16 There are 8 counters in a bag.
There is a number on each counter.

Fiona takes at random **three** of the counters.
She adds the numbers on the **three** counters to get her total.

Work out the probability that her total is an odd number.

.....
(Total for Question 16 is 4 marks)

17 (a) Use algebra to show that $0.\dot{4}\dot{3}\dot{6} = \frac{24}{55}$

(2)

(b) Show that $\frac{\sqrt{20} + \sqrt{80}}{\sqrt{3}}$ can be expressed in the form \sqrt{a} where a is an integer.

Show your working clearly.

(3)

(Total for Question 17 is 5 marks)

18 Solve the simultaneous equations

$$2x^2 + 3y^2 = 14$$

$$x = 2y - 3$$

Show clear algebraic working.

(Total for Question 18 is 5 marks)

P 5 9 0 1 4 A 0 1 7 2 4

19 $a = \frac{p - q}{t}$

$p = 8.4$ correct to 2 significant figures.

$q = 6.3$ correct to 2 significant figures.

$t = 0.27$ correct to 2 significant figures.

Work out the upper bound for the value of a .

Show your working clearly.

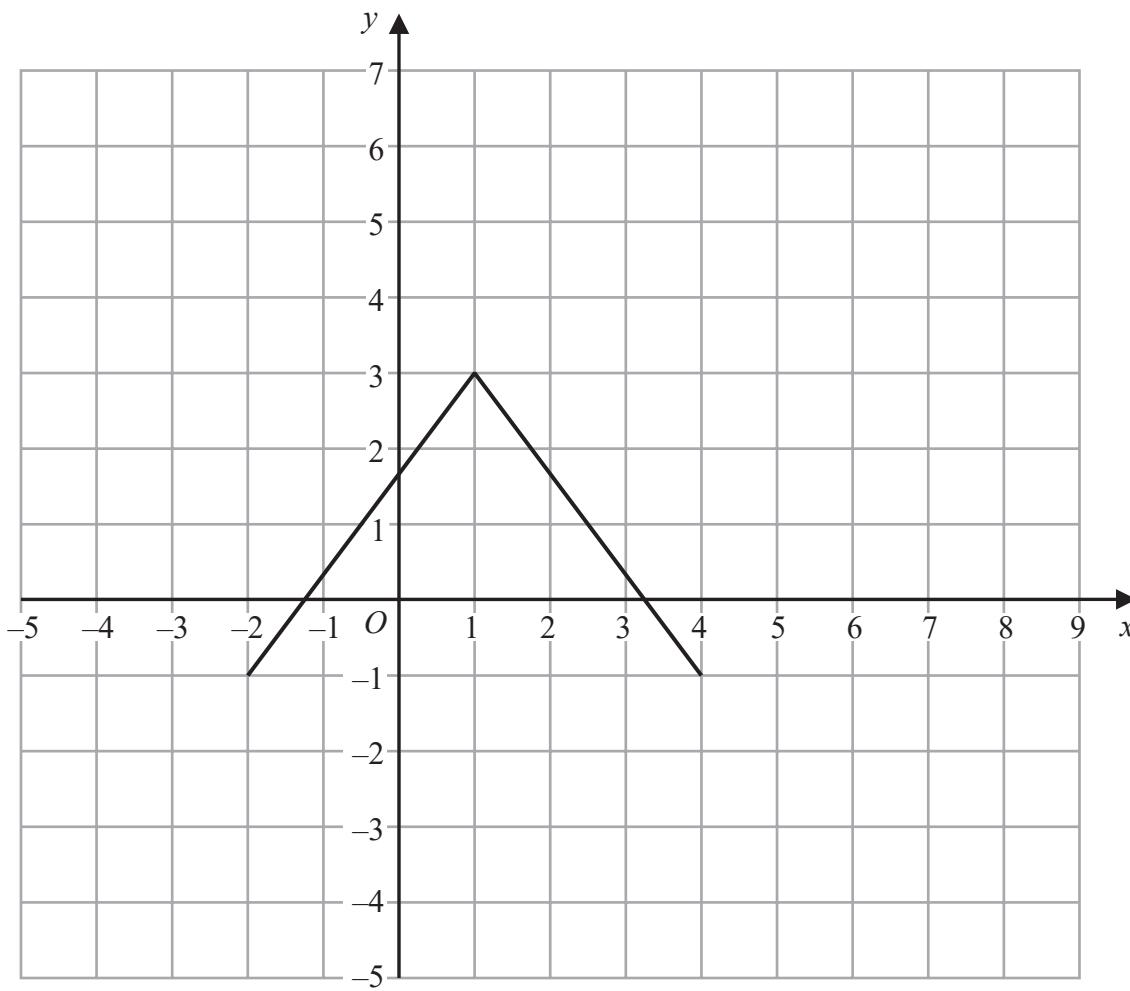
Give your answer correct to 1 decimal place.

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(Total for Question 19 is 3 marks)


20 Solve the inequality $4x^2 - 5x - 6 > 0$

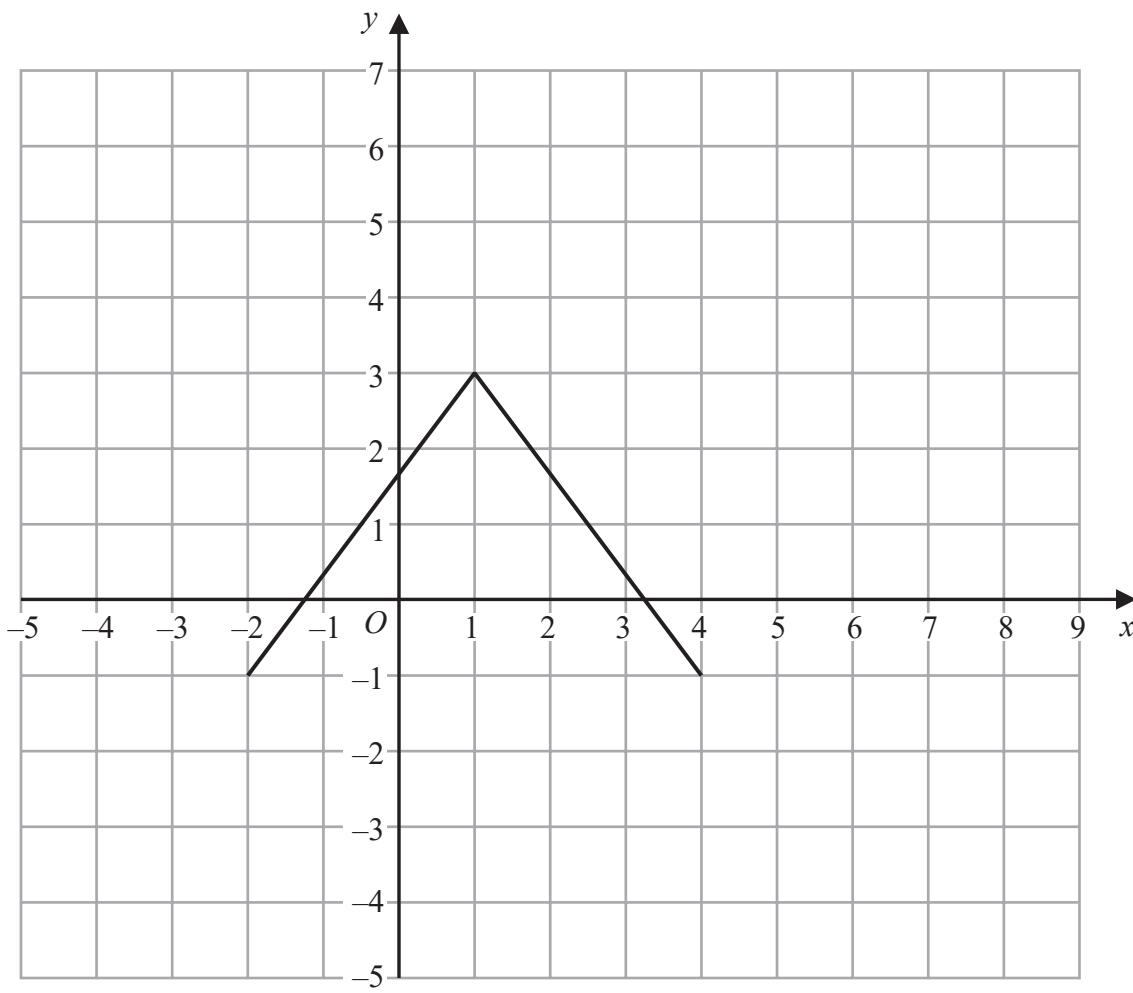
(Total for Question 20 is 4 marks)

P 5 9 0 1 4 A 0 1 9 2 4

21 Here is the graph of $y = f(x)$

(a) On the grid above, draw the graph of $y = 2f(x)$

(2)



DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Here is the graph of $y = f(x)$

(b) On the grid above, draw the graph of $y = f(-x)$

(2)

(Total for Question 21 is 4 marks)

P 5 9 0 1 4 A 0 2 1 2 4

22 Express $\frac{4x^2 - 25}{5x^2 + 2x - 7} \times \left(\frac{2}{x-3} - \frac{3}{2x-5} \right)$ as a single fraction in its simplest form.

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(Total for Question 22 is 4 marks)

23 OAB is a triangle.

$$\overrightarrow{OA} = \mathbf{a} \quad \overrightarrow{OB} = \mathbf{b}$$

C is the midpoint of OA .

D is the point on AB such that $AD:DB = 3:1$

E is the point such that $\overrightarrow{OB} = 2\overrightarrow{BE}$

Using a vector method, prove that the points C , D and E lie on the same straight line.

(Total for Question 23 is 5 marks)

P 5 9 0 1 4 A 0 2 3 2 4

24 (a) Express $7 - 4x - x^2$ in the form $p - (x + q)^2$ where p and q are constants.

..... (2)

(b) Use your answer to part (a) to solve the equation $7 - 4(y + 3) - (y + 3)^2 = 0$

Give your solutions in the form $e \pm \sqrt{f}$ where e and f are integers.

..... (3)

The curve **C** has equation $y = 3 - 5(x + 1)^2$

The point **A** is the maximum point on **C**.

(c) Write down the coordinates of **A**.

(.....,) (1)

(Total for Question 24 is 6 marks)

TOTAL FOR PAPER IS 100 MARKS

