

International GCSE Maths				
Apart from question 11c, 12, 13, 16, 19, 20 (where the mark scheme states otherwise) the correct answer, unless clearly obtained from an incorrect method, should be taken to imply a correct method.				
Q	Working	Answer	Mark	Notes
1 a		g^{10}	1	B1
b		k^7	1	B1
c		$9c^2d^8$	2	B2 B1 for 2 out of 3 terms correct in a product
d	$4x > 2 - 7$ oe			M1 accept as an equation or with wrong inequality sign.
		$x > -1.25$	2	A1 oe allow $(-1.25, (+)\infty)$ Note: award M1A0 for an answer on the answer line of -1.25 with no sign or the incorrect sign eg $x = -1.25$, $x < -1.25$
				Total 6 marks

2 a		$50 < L \leq 60$	1	B1	oe eg 50 - 60
b	$25 \times 6 + 35 \times 26 + 45 \times 31 + 55 \times 40 + 65 \times 17$ $(150 + 910 + 1395 + 2200 + 1105)(= 5760)$			M2	For correct products using midpoints (allow one error) with intention to add. M1 for products using frequency and a consistent value within the range (allow one error) with intention to add or correct products using midpoints (allow one error) without addition
	$“5760” \div “120”$			M1	dep on M1
		48	4	A1	
					Total 5 marks

3	$ADC = 180 - 58 (= 122)$ or $EDF = 122$ or $CDE = 58$ or $ADF = 58$			M1 may be seen marked on the diagram
	e.g. $DEF = 58 \div 2$ or $DEF = (180 - 122) \div 2$			M1 complete method to find angle DEF
		29		A1
		5	B2	dep on M2 for fully correct reasons for their method (B1 dep on M1 for one correct reason stated and used) e.g. <u>Allied angles</u> , <u>co-interior angles</u> , <u>Alternate angles</u> , <u>Corresponding angles</u> , <u>Vertically opposite angles</u> are equal (or Vertically <u>opposite angles</u> are equal), <u>Angles</u> on a straight <u>line</u> add up to 180° (or angles on a straight <u>line</u> add to 180°), Sum of <u>two angles</u> in a triangle are equal to <u>opposite exterior angle</u> , <u>Angles</u> in a <u>triangle</u> add up to 180° (or Angles in a <u>triangle</u> add up to 180°), Base angles in an <u>isosceles</u> triangle <u>Angles</u> in a <u>quadrilateral</u> add up to 360. (accept “4- sided shape” or parallelogram) <u>Opposite angles</u> of a <u>parallelogram</u> are equal
				Total 5 marks

4	eg $76 \div (5 + 2 - 3)$ oe ($= 19$) or $5x + 2x - 3x = 76$ and $x = 76 \div (5 + 2 - 3)$ ($= 19$) oe			M1 For a correct method to find the value of 1 share
	$3 \times "19" (= 57)$			M1
	“57” – 48.5(0)			M1
		8.5(0)	4	A1
				Total 4 marks

5	a	$1.04 \times 3\ 130\ 000\ \text{oe}$			M2 complete method to increase salary by 4% M1 for $0.04 \times 3\ 130\ 000\ \text{oe}$ (= 125 200)
			3 255 200	3	A1
b	for $0.15 \times 750\ 000\ \text{oe}$ (=112 500) or $0.85 \times 750\ 000\ \text{oe}$ (=637 500)	OR 750 000 $\times 0.85^3$		M1 For method to find depreciation for 1 year or value after 1 year	or M2 for $750\ 000 \times 0.85^3$ (= 460 593.75) or $750\ 000 \times 0.85^4$ (= 391 504.69) (M1 for $750\ 000 \times 0.85^2$ (= 541 875))
	$0.85 \times "637\ 500"\ \text{oe}$ (= 541 875) $0.85 \times "541\ 875"\ \text{oe}$ (= 460 593.75)			M1 for completing method	
			460 594	3	A1 accept $460\ 593 - 460\ 594$
					SC: if no other marks gained award M1 for $0.55 \times 750\ 000\ \text{oe}$ (= 412 500) or $0.45 \times 750\ 000\ \text{oe}$ (= 337 500) accept $(1 - 0.15)$ as equivalent to 0.85 throughout
					Total 6 marks

6				M1 for $y = 3x + c$ oe or $y = mx - 2$ oe or $3x - 2$ or eg $L = 3x - 2$ or $y = 3(x \pm a)$
		$y = 3x - 2$	2	A1 oe eg $y - 4 = 3(x - 2)$ $y - 1 = 3(x - 1)$ $y - a = 3(x - b)$ where (a, b) is any coordinate on the line
				Total 2 marks

7	$\tan x = \frac{3.4}{4.7}$ oe eg $\cos x = \frac{4.7}{\sqrt{3.4^2 + 4.7^2}}$ oe			M1 or $\sin x = \frac{3.4 \sin 90}{\sqrt{3.4^2 + 4.7^2}}$ oe
	$(x =) \tan^{-1} \left(\frac{3.4}{4.7} \right)$ oe eg $(x =) \cos^{-1} \left(\frac{4.7}{\sqrt{3.4^2 + 4.7^2}} \right)$			M1 or $(x =) \sin^{-1} \left(\frac{3.4 \sin 90}{\sqrt{3.4^2 + 4.7^2}} \right)$ oe
		35.9	3	A1 accept 35.7 - 36.1
				Total 3 marks

8	$8.5^2 - (8 \div 2)^2 (= 56.25)$ or $\cos x = \frac{4}{8.5}$ oe			M1 or eg $\cos A = \frac{8^2 + 8.5^2 - 8.5^2}{2 \times 8 \times 8.5}$
	$\sqrt{56.25}$ ($= 7.5$) or $x = \cos^{-1} \left(\frac{4}{8.5} \right) (= 61.927\dots)$ oe			M1 or eg $(A =) \cos^{-1} \left(\frac{8^2 + 8.5^2 - 8.5^2}{2 \times 8 \times 8.5} \right) (= 61.927\dots)$ (other angle $= 56.144\dots$)
	$8 \times "7.5" \div 2$ oe or $0.5 \times 8 \times 8.5 \times \sin "61.927\dots"$			M1 or eg $0.5 \times 8.5 \times 8 \times \sin "61.927\dots"$ oe
		30	4	A1
				Total 4 marks

9	$\pi \times 3^2 \times h = 72\pi$ oe			M1	Allow use of 3.14... or $\frac{22}{7}$ for π and use of 226... for 72π
	$h = 72\pi \div (\pi \times 3^2)$ oe or $h = 8$			M1	method to isolate h (may be seen in several stages)
	$2 \times \pi \times 3^2$ (= 18 π or 56.54...) or $2 \times \pi \times 3 \times "8"$ oe (= 48 π or 150 - 151)			M1	method to find the area of the two circles or curved surface area – use of their h , dep on 1st M1 (NB may get this mark for total area of 2 circles with no previous marks awarded)
	$2 \times \pi \times 3^2 + 2 \times \pi \times 3 \times "8"$ oe (= 66 π)			M1	method to find total surface area ft their h dep on 1st M1, including intention to add, to find the total surface area
		207	5	A1	accept 207-208
					Total 5 marks

10	a		10, 26, 70, 99, 114, 120	1	B1
	b		correct cumulative frequency graph	2	<p>B2 fully correct cf graph – points at ends of intervals and joined with curve or line segments</p> <p>If not B2 then B1 for 5 or 6 (ft from a table with only one arithmetic error) of their points at ends of intervals and joined with curve or line segments</p> <p>OR for 5 or 6 points plotted correctly at ends of intervals not joined</p> <p>OR for 5 or 6 of their points from table plotted consistently within each interval (not at upper ends of intervals) at their correct heights and joined with smooth curve or line segments</p>
	c				M1 For use of 30 and 90, or 30.25 and 90.75 (eg reading of 21 and 37 stated or indicated by marks on horizontal axis that correspond to 30 (or 30.25) and 90 (or 90.75) on the vertical axis or correct readings ft their cf graph provided method to show readings is shown)
		16	2	A1	accept 14 – 18, ft from their cf graph (ft provided method to show readings is shown)
	d			M1	For use of cf from number of minutes late being 48 (eg an indication by a mark on the vertical axis corresponding to 48 mins late or a correct reading ft their cf graph)
		9	2	A1	accept 7 – 10, ft from their cf graph
					Total 7 marks

11	a		$4e^{10}$	2	B2 (B1 for $4e^k$ or ke^{10})
b	<p>A correct first step eg</p> $\frac{y^{-4}}{2^{-4}} \text{ or } \left(\frac{y^4}{16}\right)^{-1} \text{ or } \frac{y^{-4}}{0.0625} \text{ or } \left(\frac{2}{y}\right)^4 \text{ or } \frac{16}{y^4} \text{ or } \left(\frac{1}{\frac{y^4}{16}}\right)^4 \text{ or } \frac{1}{\left(\frac{y^4}{16}\right)^4}$				M1 or for $16y^p$ where $p \neq -4$
		$16y^{-4}$	2		A1
c	<p>eg $12 \times \frac{4x-2}{3} - 12 \times \frac{5-3x}{4} = 12 \times 6$ or</p> <p>eg $4(4x-2) - 3(5-3x) = 12 \times 6$ or</p> <p>eg $\frac{4(4x-2)}{12} - \frac{3(5-3x)}{12} (= 6)$ or</p> <p>eg $\frac{4(4x-2) - 3(5-3x)}{12} (= 6)$ oe</p>				<p>M1 for clear intention to multiply all terms by 12 or a multiple of 12</p> <p>or to express LHS as two fractions over 12 or a multiple of 12 or as a single fraction with a denominator of 12 or a multiple of 12</p> <p>(if expanded numerator, allow one sign error)</p>
	eg $16x - 8 - 15 + 9x = 6 \times 12$				M1 expanding brackets and multiplying both sides by denominator with no more than one sign error
	eg $16x + 9x = 72 + 8 + 15$				M1 for correct rearrangement of a correct equation with terms in x isolated
		3.8	4	A1 oe, award full marks for a correct answer if at least M1 scored	
					Total 8 marks

12	$3^4 = \frac{3^x}{9^{3x}}$ or $81 = \frac{3^x}{(3^2)^{3x}}$	$9^2 = \frac{3^x}{9^{3x}}$ or $81 = \frac{(9^{0.5})^x}{9^{3x}}$			M1 replacing 81 with 3^4 or 9^{3x} with $(3^2)^{3x}$ (or 3^{6x}) or replacing 81 with 9^2 or 3^x with $(9^{0.5})^x$ (in an equation)
	eg $4 + 6x = x$ or $4 = x - 2(3x)$ oe	eg $2 = 0.5x - 3x$ oe			M1 a correct equation using powers
			-0.8	3	A1 oe, dep on at least M1
					Total 3 marks

13	e.g. $x = 0.6\dot{8}\dot{1}$ and $100x = 68.\dot{1}\dot{8}$ or $10x = 6.\dot{8}\dot{1}$ and $1000x = 681.\dot{8}\dot{1}$				M1 e.g. two decimals that when subtracted give a finite decimal (must show understanding of recurring figures by 'dot' or at least 2 lots of 18 or 81 after the decimal point). Algebra required, use of any letter.
	$99x = 67.5$, $x = \frac{67.5}{99} = \frac{15}{22}$ or $990x = 675$, $x = \frac{675}{990} = \frac{15}{22}$ oe	show	2	A1	dep for completing the 'show that' arriving at given answer from correct working.
					Total 2 marks

14	a		8	1	B1
b	$A = \{10, 11, 12, 13, 14, 15, 16, 17\}$ $B = \{13, 14, 15, 16, 17, 18, 19, 20, 21\}$ or $A \cup B = \{10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21\}$			M1	may be seen in a Venn diagram (allow for example 10 – 17 for A and 13 – 21 for B or 10 – 21 for $A \cup B$) or for an answer with one missing element or one extra element
		22, 23, 24, 25	2	A1	
c	$A' = \{18, 19, 20, 21, 22, 23, 24, 25\}$ $B = \{13, 14, 15, 16, 17, 18, 19, 20, 21\}$			M1	may be seen in a Venn diagram (allow 18 – 25 for A' and 13 – 21 for B) or for an answer with one missing element or one extra element
		18, 19, 20, 21	2	A1	
d		13, 14, 15, 16, 17	1	B1	
					Total 6 marks

15	$xy + 3y = 5 - 2x$ oe			M1 multiplying both sides by $(x + 3)$ and expanding the brackets correctly
	e.g. $xy + 2x = 5 - 3y$			M1 ft dep on 2 terms on left and $(5 - 2x)$ on right, for collecting all x terms on one side and non- x terms on the other side
	eg $x(y + 2) = 5 - 3y$			M1 ft, dep on 2 terms in x , for factorising for x
		$x = \frac{5-3y}{2+y}$	4	A1 oe allow $\frac{5-3y}{2+y}$ as answer so long as previously seen $x = \frac{5-3y}{2+y}$
				Total 4 marks

16	$3y(2y + 1) - y^2 = 8 \text{ or}$ $x = \frac{8 + y^2}{3y} \rightarrow \frac{8 + y^2}{3y} - 2y = 1 \text{ or}$ $-3xy - y^2 = 8$ $3xy - 3y \times 2y = 3y \times 1$ oe	$3x\left(\frac{x-1}{2}\right) - \left(\frac{x-1}{2}\right)^2 = 8$ oe			M1 correct first step eg substitution by eg $x = 1 + 2y$ or $y = \frac{x-1}{2}$ to get an equation in a single variable or writing 2 nd equation with x the subject and substituting into 1 st or multiplying 2 nd equation by $3y$ and subtracting from 1 st oe
	eg $5y^2 + 3y - 8 (= 0)$	eg $5x^2 - 4x - 33 (= 0)$			A1 for a correct simplified quadratic
	$(5y + 8)(y - 1) (= 0) \text{ or}$ $\frac{-3 \pm \sqrt{3^2 - 4 \times 5 \times (-8)}}{2 \times 5}$	$(5x + 11)(x - 3) (= 0) \text{ or}$ $\frac{4 \pm \sqrt{(-4)^2 - 4 \times 5 \times (-33)}}{2 \times 5}$			M1ft dep on M1 for solving their 3 term quadratic equation using any correct method (allow one sign error and some simplification – allow as far as $\frac{-3 \pm \sqrt{9+160}}{10}$) or if factorising, allow brackets which expanded give 2 out of 3 terms correct)
	$y = -\frac{8}{5}$ and $y = 1$ (both)	$x = -\frac{11}{5}$ and $x = 3$ (both)			A1 dep on first M1
		$x = -\frac{11}{5}, y = -\frac{8}{5}$ $x = 3, y = 1$	5		A1 oe dep on first M1 Must be paired correctly
					Total 5 marks

17	$(3x + 2)(2x - 4) < 3x + 27$ oe eg $6x^2 - 8x - 8 < 3x + 27$			M1 condone incorrect symbol
	eg $6x^2 - 11x - 35 < 0$			M1 expanding and rearranging to get a correct 3 term quadratic, condone incorrect symbol
	$(2x - 7)(3x + 5) (= 0)$ or $\frac{11 \pm \sqrt{(-11)^2 - 4 \times 6 \times (-35)}}{2 \times 6}$			M1 first step to find the critical values dep on M1 for solving their 3 term quadratic using any correct method (allow one sign error and some simplification – allow as far as the equivalent of $\frac{11 \pm \sqrt{121+840}}{12}$) or if factorising, allow brackets which expanded give 2 out of 3 terms correct)
	$-\frac{5}{3}, \frac{7}{2}$			A1 oe the positive critical value only or both critical values (if both they must be correct)
		$2 < x < \frac{7}{2}$	5	A1 accept $2 \leq x < \frac{7}{2}$ may be seen as two separate inequalities $x > 2$ ($x \leq 2$) and $x < \frac{7}{2}$
				Total 5 marks

18	<p>eg $\frac{4}{AC} = \tan 35$ oe or $\frac{AC}{4} = \tan 55$ oe or $\frac{AC}{\sin 55} = \frac{4}{\sin 35}$ oe or</p> $CH = \frac{4}{\sin 35} \text{ oe } (= 6.97\ldots) \text{ and } \frac{AC}{6.97} = \cos 35 \text{ oe or}$ $CH = \frac{4}{\sin 35} \text{ oe } (=6.97\ldots) \text{ and } AC^2 = 6.97^2 - 4^2 \text{ oe}$			M1 A correct trig statement involving AC or trig and then Pythagoras involving AC
	$(AC =) \frac{4}{\tan 35} \text{ oe eg } (AC =) 4\tan 55 (= 5.71\ldots) \text{ or}$ $(AC =) \frac{4 \sin 55}{\sin 35} \text{ or } "6.97" \times \cos 35 \text{ oe or } (AC =) \sqrt{"6.97"^2 - 4^2}$			M1 complete method to find AC
	$(BC =) \sqrt{"5.71"^2 - 5^2} (= 2.76\ldots)$			M1 complete method to find BC
	$4 \times 5 \times "2.76..."$			M1 method to find volume
		55.3	5	A1 accept 55.1 – 55.5
				Total 5 marks

19	$\overrightarrow{AB} = -\mathbf{a} + \mathbf{b}$ or $\overrightarrow{BA} = \mathbf{a} - \mathbf{b}$			M1	Correct diagram (condone missing vector labels or arrows – with C on line segment OA and D on line segment OB) OR for finding \overrightarrow{AB} or \overrightarrow{BA} - may be seen as part of later working
	$\overrightarrow{CD} = \frac{1}{3}(-\mathbf{a} + \mathbf{b})$ or $\overrightarrow{DC} = \frac{1}{3}(\mathbf{a} - \mathbf{b})$ oe			M1	Method to find \overrightarrow{CD} or \overrightarrow{DC}
		Correct vectors and conclusion including <u>parallel</u> and <u>trapezium</u>	3	A1	eg \overrightarrow{AB} (AB) and \overrightarrow{CD} (CD) are parallel therefore $ABDC$ is a trapezium
					Total 3 marks

20	$\frac{\binom{X+4}{2}}{X} (= \frac{X+4}{2X}) \text{ or}$ $\frac{\binom{X+4}{2}-1}{X-1} (= \frac{X+2}{2X-2})$	eg, where b = number of blue counters $\frac{b}{2b-4} \text{ or } \frac{b-1}{2b-5}$	eg, where r = number of red counters $\frac{r+4}{2r+4} \text{ or } \frac{r+3}{2r+3}$		M1 for making a correct start by finding the probability of the first counter being blue for their method
	eg $\frac{X+4}{2X} \times \frac{X+2}{2X-2}$	eg $\frac{b}{2b-4} \times \frac{b-1}{2b-5}$	eg $\frac{r+4}{2r+4} \times \frac{r+3}{2r+3}$		M1 oe correct calculation for 2 blue (using one variable)
	eg $8(X^2 + 6X + 8) = 3(4X^2 - 4X)$	eg $8b(b-1) = 3(2b-4)(2b-5)$	eg $8(r+4)(r+3) = 3(2r+4)(2r+3)$		M1 dep for a correct equation with no algebraic fractions eg could have $X^2 + 6X + 8 = \frac{3}{8}(4X^2 - 4X)$
	Eg $4X^2 - 60X - 64 (= 0)$ or $X^2 - 15X - 16 (= 0)$ oe	eg $4b^2 - 46b + 60 (= 0)$ or $2b^2 - 23b + 30 (= 0)$ oe	eg $4r^2 - 14r - 60 (= 0)$ or $2r^2 - 7r - 30 (= 0)$ oe		M1 for rearranging their equation to a correct 3 term quadratic
				16	5 A1 cao dep on M4
					Total 5 marks

21	a	$5 - (x \pm q)^2 + 9$ oe or $p - (x - 3)^2$ oe or $p - q^2 + 2qx - x^2$ and one of $2q = 6$ or $p - q^2 = 5$		M1 may be seen in working eg $-(x - 3)^2 - 9 - 5$ or expanding $p - (x - q)^2$ correctly and equating one of the coefficient of x or the constant term
		$14 - (x - 3)^2$	2	A1 fully correct SCB1 for $(x - 3)^2 - 14$
	b	e.g. $(x - 3)^2 = 14 - y$ [or $(y - 3)^2 = 14 - x$]		M1 correct steps to isolate their bracket ft from (a) dep on expression in form $\pm p \pm (x - q)^2$
		$x = 3 \pm \sqrt{14 - y}$ [or $y = 3 \pm \sqrt{14 - x}$]		M1 complete method to find y in terms of x or x in terms of y . Condone + for \pm ft from (a) dep on expression in form $\pm p \pm (x - q)^2$
		$(f^{-1}(x) =) 3 - \sqrt{14 - x}$		M1 for the correct inverse
				M1 method to solve $0 < 3 - \sqrt{14 - x}$ or a lower bound of 5 clearly shown, eg $x > 5$ as part of the answer
		$5 < x \leq 14$	5	A1 cao
				Total 7 marks