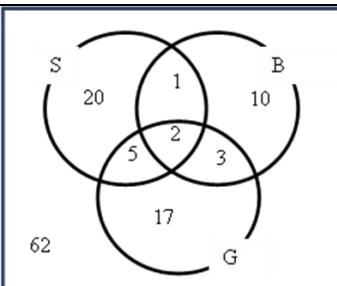


Apart from questions 10b, 11, 12, 21, 22 (where the mark scheme states otherwise) the correct answer, unless clearly obtained from an incorrect method, should be taken to imply a correct method.

Question	Working	Answer	Mark	Notes
1 (a) (b)	$2 \times 16 + 6 \times 18 + 10 \times 19 + 14 \times 27 + 18 \times 20$ $= 32 + 108 + 190 + 378 + 360$ $= 1068$	$12 < d \leq 16$ 10.68	1 4	<p>B1</p> <p>M2 $f \times d$ for at least 4 products with correct mid- interval values and intention to add.</p> <p>If not M2 then award M1</p> <p>for d used consistently for at least 4 products within interval (including end points) and intention to add</p> <p>or</p> <p>for at least 4 correct products with correct mid-interval values with no intention to add</p> <p>M1 dep on at least M1 Allow division by their $\sum f$ provided addition or total under column seen</p> <p>A1 Accept 10, 10.7 and 11</p>

Question	Working	Answer	Mark	Notes
2	$0.5 \times 6 \times 6 \times 5 (= 90)$ $0.5 \times \pi \times 3^2 \times 5 (=22.5\pi = 70.6858\dots)$ or $\pi \times 3^2 \times 5 (=45\pi = 141.37166\dots)$ ‘90’ – ‘70.6858.....’	19.3	4	M1 Correct method for volume of A M1 Correct method for volume of B or correct volume of cylinder M1 Correct method to find the difference in the volume A1 $19 - 19.4$
3 (a)		$6n + 4$	2	M1 for $6n + k$ (k may be 0 or absent) oe A1 oe eg $10 + (n - 1)6$ or $n \times 6 + 4$
(b)	...40, 46,... -2, 1, 6, 13, 22, 33 46 ... $6n + 4 = n^2 - 3$ oe	e.g. 22 or 46	2	M1 continuing sequence and writing at least 5 terms of 2 nd sequence – allow one error or for a correct equation ft part (a) A1 or other number in both sequences eg -2

Question	Working	Answer	Mark	Notes
4	$0.07 \times 10\ 800 (= 756)$ oe $10\ 800 + '756'$	11 556	3	M1 M1 M2 for $1.07 \times 10\ 800$ oe A1
5 (a)		P in correct region on overlay	2	M1 Correct bearing ($\pm 2^\circ$) or correct distance (± 2 mm) A1 Fully correct position for P
(b) (i)		154	2	B1 150 – 158 ft from diagram
(ii)		332		B1 330 – 334 ft from diagram
6	$360 \div 8 (= 45)$ or $180 - (360 \div 8) (= 135)$ or $\frac{6 \times 180}{8} (= 135)$ oe e.g. $\frac{540 - 112 - 112 - 84}{2} (= 116)$ or $\frac{540 - 308}{2} (= 116)$ or $\frac{232}{2} (= 116)$ e.g. '135' – '116' or $180 - '116' - '45'$	19	4	M1 Correct method to find the interior or exterior angle of octagon M1 Correct method to find a missing angle from pentagon M1 Complete method A1


Question	Working	Answer	Mark	Notes
7	$\tan '35' = \frac{x}{15} \text{ or } \tan '55' = \frac{15}{x} \text{ or}$ $\frac{x}{\sin 35} = \frac{15}{\sin 55}$ $x = 15 \times \tan '35' (= 10.5\dots) \text{ or}$ $x = \frac{15}{\tan '55'} (= 10.5\dots) \text{ or}$ $x = \frac{15}{\sin 55} \times \sin 35 (= 10.5\dots)$ $10.5 + 37$	47.5	4	M1 Forming a right-angled triangle with angle 125 – 90 marked or 55 marked M1 M1 A1 awrt 47.5
8 (a)		$3k^3m$	2	B1 for an answer in the form $ak^x m^y$ with 2 correct from $a = 3, x = 3, y = 1$
(b)	$7 + 1 < 4x \leq 17 + 1 \text{ or } \frac{7}{4} < x - \frac{1}{4} \leq \frac{17}{4}$ $(7+1)\div 4 < x \leq (17+1)\div 4 \text{ or}$ $\frac{7}{4} + \frac{1}{4} < x \leq \frac{17}{4} + \frac{1}{4}$	$2 < x \leq 4.5$	3	M1 or one side of the inequality correct, e.g. 2 or 4.5 M1 A1 Accept $x > 2, x \leq 4.5$

Question	Working	Answer	Mark	Notes	
9	$6000 \times 0.015 (= 90)$ or $6000 \times 1.015 (= 6090)$ $(6000 + '90') \times 0.015 (= 91.35)$ $('6090' + '91.35') \times 0.015 (= 92.72)$ $('6090' + '91.35' + '92.72') \times 0.015$ $(= 94.11..)$	368.18	3	M1 or for $\frac{4 \times 1.5}{100} \times 6000$ $(=360)$ or 6360 M1 for complete method (4 years) for total value or sight of 6368..... A1 accept 368 – 368.20	M2 for 6000×1.015^4

Question	Working	Answer	Mark	Notes
10 (a)		$4x^4y^3$	2	B2 B1 for 2 correct terms of 3 in a product
(b)	e.g. $2(8 - 2x) - 3(2x - 3) = 4 \times 6$ or $\frac{2(8-2x)}{6} - \frac{3(2x-3)}{6} = 4 \text{ or}$ $\frac{16-4x}{6} - \frac{6x-9}{6} = 4 \text{ or}$ $\frac{2(8-2x)-3(2x-3)}{6} = 4 \text{ or}$ $\frac{-10x+25}{6} = 4 \text{ oe}$ e.g. $16 - 4x - 6x + 9 = 24$ or $-10x + 25 = 24 \text{ oe}$	0.1	3	M1 For method to deal with fractions eg. finds a common denominator (6 or a multiple of 6) or multiplies by common multiple in a correct equation. Condone one error in expansion
(c)	$m^2 = \frac{1}{3}ef$	$f = \frac{3m^2}{e}$	2	M1 For method to expand brackets and multiplies by common denominator in a correct equation. Condone one error in expansion

Question	Working	Answer	Mark	Notes
11	e.g. $y = 2 - \frac{1}{2}x$ or $y = 2 - \frac{x}{2}$ or $y = \frac{4-x}{2}$ or gradient of $L_1 = -0.5$ oe e.g. $\frac{9-7}{7-1} (=2)$ or $\frac{-7-9}{-1-7} (=2)$	Yes, with correct gradients shown to make -1 when multiplied	3	M1 M1 A1 $2 \times -0.5 = -1$ and yes
Alternative scheme for 11				
	e.g. $y = 2 - \frac{1}{2}x$ or $y = 2 - \frac{x}{2}$ or $y = \frac{4-x}{2}$ or gradient of $L_1 = -0.5$ oe $-7 = 2(-1) + c$ or $9 = 2(7) + c$ ($c = -5$)	Yes, with correct equation shown to be valid by using the given points	3	M1 M1 dep on M1 for substituting $(-1, -7)$ or $(7, 9)$ into $y = 2x + c$ to find value of c A1 Uses the other point in $y = 2x - 5$ to show it is valid and yes

Question	Working	Answer	Mark	Notes
12	0, 4, 6, 9, 17, 21, 32, 42, 51, 69, 102	45	3	M1 for identifying 6 or 51 from ordered list or attempt to find 3 rd and 9 th seen (from an ordered list) M1 for identifying 6 and 51 A1 for 45
13	$1 + 0.65 + 1.22 (=2.87)$ or $100 + 65 + 122 (=287)$ $861 \div 2.87$ or $(861 \div 287) \times 100$ oe	300	3	M1 oe Note: $861 \div 3 = 287$ is M0 M1 A1
14	(a)(i) (ii) (iii) (b)	a^2 ab^4 $\frac{1}{3}b$ $x = 4, y = 3$	1 1 1 3	B1 B1 B1 oe M1 or $x + y = 7$, M1 $2x + y = 11$ A1 $x = 4$ and $y = 3$

Question	Working	Answer	Mark	Notes
15 (a)	$0.3^3 \times 0.7$ $4 \times 0.3^3 \times 0.7$	0.0756	3	M1 oe M1 oe A1 $\frac{189}{2500}$ or 0.075 or 0.076
	$1 - 0.7^4$ oe	0.7599	2	M1 Fully correct method A1 $0.759 - 0.7560$
16 (a)			3	M1 for 2 in the middle and one from 1 or 3 or 5 in the correct place in the Venn diagram
				M1 for any 4 correct entries A1 for a fully correct answer including 62 outside the circles inside the rectangle
(b)		$\frac{3}{28}$	1	B1ft

Question	Working	Answer	Mark	Notes
17 (a)	4.75×0.255	1.21	2	M1 for 4.75 or 0.255 seen A1 1.21125
	$2.735 \div 0.035$	78	2	M1 2.735 or 0.035 seen A1 78.142857...
18 (a)	$(0, 1), (90, 0), (180, -1), (270, 0), (360, 1)$	Curve through given coordinates	2	M1 for a translation of the curve parallel to the x axis or for a curve going through 3 correct points
		(180, 4)	2	A1 fully correct M1 1 coordinate correct or a sketch of $\sin\left(\frac{x}{2}\right)^0$
				A1 for (180, 4)

Question	Working	Answer	Mark	Notes
19	$\frac{BD}{\sin 97} = \frac{9.3}{\sin 58}$ $BD = \frac{9.3}{\sin 58} \times \sin 97 (= 10.8846..)$ $0.5 \times '10.88.' \times 11.2 \times \sin 47 (= 44.57....)$ $0.5 \times '10.88..' \times 9.3 \times \sin 25 (=21.39.....) \text{ or}$ $0.5 \times '4.63458 ...' \times 9.3 \times \sin 97 (=21.39.....)$	66.0	5	M1 M1 M1 Complete method to find area BCD M1 Complete method to find area ABD A1 Allow 65.9 – 66.1
20 (a)	$3(x^2 - 4x) + 7 \text{ or } 3\left(x^2 - 4x + \frac{7}{3}\right)$ $3((x-2)^2 - 4) + 7 \text{ or } 3\left((x-2)^2 - 4 + \frac{7}{3}\right) \text{ or}$ $3(x-2)^2 - 12 + 7$	$3(x-2)^2 - 5$	3	M1 or expanding $a(x^2 + 2bx + b^2) + c$ M1 $-12 = 2ab$ or $7 = ab^2 + c$ A1 or $a = 3, b = -2, c = -5$ B1 ft from (a)
(b)		$x = 2$	1	

Question	Working	Answer	Mark	Notes
21	$(10x - 3)(x + 1) = 6x$ $10x^2 + x - 3 (= 0)$ $(5x + 3)(2x - 1) (= 0) \text{ or}$ $x = \frac{-1 \pm \sqrt{1^2 - (4 \times 10 \times -3)}}{2 \times 10} \text{ or}$ $10(x + 0.05)^2 - 0.025 - 3 = 0$ $x = -0.6 \text{ and } x = 0.5 \quad (y = -3.6 \text{ and } y = 3)$ $\frac{'-0.6' + '0.5'}{2} \text{ or } \frac{'-3.6' + '3'}{2} \quad \text{oe}$	(-0.05, -0.3)	6	M1 for a correct equation to find points A and B M1 for rearranging equation in the form $ax^2 + bx + c (= 0)$ M1 dep on M1 for solving the quadratic equation using factorisation or using the formula or by completing the square A1 Both x values correct dep on M2 M1 dep on M1 A1

Question	Working	Answer	Mark	Notes		
22	$\pi \times (5r)^2 \times \frac{45}{360} \text{ or } \pi \times (3r)^2 \times \frac{45}{360}$ $\pi \times r^2 \times \frac{45}{360} \text{ or } \pi \times (0.6r)^2 \times \frac{45}{360}$ $\pi \times (5r)^2 \times \frac{45}{360} - \pi \times (3r)^2 \times \frac{45}{360} = \frac{81}{2}\pi \text{ or}$ $\pi \times r^2 \times \frac{45}{360} - \pi \times (0.6r)^2 \times \frac{45}{360} = \frac{81}{2}\pi$ $r^2 = (40.5 \times 8) \div (1 - 0.36) \text{ or } r^2 = 506.25 \text{ oe}$ $(r = 22.5)$ $r^2 = (40.5 \times 8) \div (25 - 9) \text{ or } r^2 = 80.25 \text{ oe}$ $(r = 4.5)$ $(AB =) 2 \times \pi \times '13.5' \times \frac{45}{360} \left(= \frac{27}{8}\pi \right) \text{ or}$ $(PQ =) 2 \times \pi \times '22.5' \times \frac{45}{360} \left(= \frac{45}{8}\pi \right) \text{ oe}$ $\text{Perimeter} = \frac{27}{8}\pi + \frac{45}{8}\pi + '9' + '9'$	$9\pi + 18$	6	M1 M1 M1 M1 M1 M1 M1 M1 A1	oe oe oe or 1 share = 4.5 or $r = 22.5$ or $OA = 13.5$ or $AP = 9$ dep on M3 or $2 \times \pi \times ('13.5' + '22.5') \times \frac{45}{360} (= 9\pi)$ dep on M4 oe	M2 for $0.64\pi r^2 \times \frac{45}{360} = \frac{81}{2}\pi$ or $16\pi r^2 \times \frac{45}{360} = \frac{81}{2}\pi$

Question	Working	Answer	Mark	Notes
23	$a + 9d = 66 \text{ oe}$ $\frac{20}{2}(2a + 19d) = 1290 \text{ oe}$ $a = 93 \text{ or } d = -3$	81	4	M1 A correct formula involving 10 th term M1 Correct formula for sum of first 20 terms A1 A correct value for a or d A1 dep on M2