

Please check the examination details below before entering your candidate information.

Candidate surname	Other names
Centre Number	Candidate Number
Pearson Edexcel International GCSE	
Time 2 hours	
Paper reference	4MA1/1H

Mathematics A
PAPER 1H
Higher Tier

You must have:
Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Total Marks

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
– there may be more space than you need.
- Calculators may be used.
- You must NOT write anything on the formulae page.
Anything you write on the formulae page will gain NO credit.

Information

- The total mark for this paper is 100.
- The marks for each question are shown in brackets
– use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.
- Good luck with your examination.

P65914A
© 2013 Pearson Education Ltd.
17/1/2013/1/2

DO NOT WRITE IN THIS AREA

Answer all TWENTY SIX questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

1 A plane flew from Madrid to Dubai.

The distance the plane flew was 5658 km.
The flight time was 8 hours 12 minutes.

Work out the average speed of the plane.

D
S
T

$$\begin{array}{r} 5658 \\ \hline 82 \end{array}$$

690

km/h

(Total for Question 1 is 3 marks)

2 Here are the first 4 terms of an arithmetic sequence.

85 79 73 67

Find an expression, in terms of n , for the n th term of the sequence.

$\textcircled{-6n}$

$-6 \textcircled{-10} \textcircled{-18} \textcircled{-24}$

$\textcircled{-6} \textcircled{+91}$

$-6n + 91$

(Total for Question 2 is 2 marks)

3

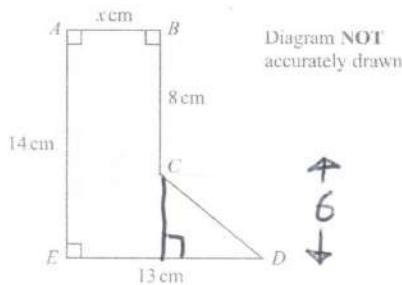


Diagram NOT
accurately drawn

The diagram shows the shape ABCDE.

The area of the shape is 91.8 cm^2 .

Work out the value of x .

$$A = 14x + \frac{1}{2}x(13-x) \times 6$$

$$= 14x + 39 - 3x = 91.8$$

$$11x = 52.8$$

$$x = \frac{52.8}{11}$$

$$4.8$$

$x =$

(Total for Question 3 is 4 marks)

4

4 On a farm there are chickens, ducks and pigs.

The ratio of the number of chickens to the number of ducks is 7:2
The ratio of the number of ducks to the number of pigs is 5:9
There are 36 pigs on the farm.

Work out the number of chickens on the farm.

C
7

D
2

P

20
5

36
9

$\uparrow \times 4$

Ⓐ $2 \times 10 = 20$

Ⓑ $7 \times 10 =$

70

(Total for Question 4 is 3 marks)

5

Turn over

5 (a) Expand and simplify $3x(2x + 3) - x(3x + 5)$

$$6x^2 + 9x \quad | - 3x^2 - 5x$$

$$\begin{array}{r} 3x^2 + 4x \\ \hline \end{array}$$

(2)

(b) Make t the subject of the formula $p = at - d$

$$p + d = at$$

$$t = \frac{p+d}{a}$$

(2)

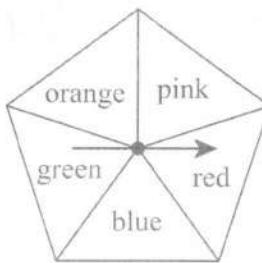
Given that $\frac{w^5 \times w^n}{w^3} = w^{10}$

(c) work out the value of n .

$$w^5 \times w^n = w^{10} \times w^3$$

$$n + 5 = 13$$

8


$n =$ _____

(2)

(Total for Question 5 is 6 marks)

6 Grace has a biased 5-sided spinner.

Grace is going to spin the arrow on the spinner once.

The table below gives the probabilities that the spinner will land on red or on blue or on green.

Colour	Red	Blue	Green	Orange	Pink
Probability	0.20	0.12	0.08	$3x$	x

The probability that the spinner will land on orange is 3 times the probability that the spinner will land on pink.

(a) Work out the probability that the spinner will land on orange.

$$\begin{aligned}
 4x + 0.4 &= 1 \\
 4x &= 0.6 \\
 x &= 0.15 \\
 3x &= 0.45
 \end{aligned}$$

(3)

Grace spins the arrow on the spinner 150 times.

(b) Work out an estimate for the number of times the spinner lands on blue.

$$150 \times 0.12$$

$$18$$

(2)

(Total for Question 6 is 5 marks)

$$7 \quad -4 \leq 2y < 6$$

y is an integer.

(a) Write down all the possible values of y .

$$-2 \leq y < 3$$

$$-2, -1, 0, 1, 2$$

(2)

(b) Solve the inequality $7t - 3 \leq 2t + 31$

Show your working clearly.

$$5t \leq 34$$

$$t \leq \frac{34}{5}$$

$$t \leq 6.8$$

(2)

(Total for Question 7 is 4 marks)

8 The table shows the populations of five countries.

Country	Population
China	1.4×10^9
Germany	8.2×10^7
Sweden	9.9×10^6
Fiji	9.1×10^5
Malta	4.3×10^5

(a) Work out the difference between the population of China and the population of Germany.
Give your answer in standard form.

$$C - G = 1,318,000,000$$

$$1.318 \times 10^9$$

(2)

Given that

$$\text{population of Fiji} = \frac{1}{k} \times \text{population of Sweden}$$

(b) work out the value of k .

Give your answer correct to the nearest whole number.


$$\text{if } F = \frac{S}{K}$$

$$K = \frac{S}{F} = \frac{9.9 \times 10^6}{9.1 \times 10^5}$$

$$\approx 1.08 \times 10^1$$

$$k = \underline{\hspace{2cm}} \quad \underline{\hspace{2cm}} \quad (2)$$

(Total for Question 8 is 4 marks)

9 (a) Factorise fully $25a^4c^7d + 45a^9c^3h$

$$5a^4c^3(5c^4d + 9a^5h)$$

(2)

(b) Solve $(2x + 5)^2 = (2x + 3)(2x - 1)$

$$4x^2 + 25 + 20x = 4x^2 - 3 + 4x$$

$$16x = -28$$

$$x = -\frac{18}{16} = -\frac{9}{8} = -\frac{7}{4}$$

$$x = -1.75$$

(3)

(Total for Question 9 is 5 marks)

10 Jethro has sat 5 tests.

Each test was marked out of 100 and Jethro's mean mark for the 5 tests is 74

$$x = 370$$

Jethro has to sit one more test that is also to be marked out of 100

Jethro wants his mean mark for all 6 tests to be at least 77

$$x = 462$$

Work out the least mark that Jethro needs to get for the last test.

$$462 - 370$$

$$= 92$$

(Total for Question 10 is 3 marks)

11 $\sqrt{2} \times 16 = 2^x$

(a) Find the value of x .
Show your working clearly.

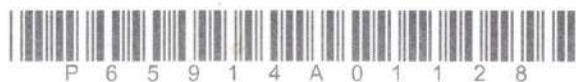
$$2^{\frac{1}{2}} \times 2^4$$

$$= 2^{4.5}$$

$$4.5$$

$$x = \dots \quad (2)$$

$$\frac{(11^{-6})^5}{11^4} = 11^n$$


(b) Find the value of n .
Show your working clearly.

$$= \frac{11^{-30}}{11^4} = 11^{-34}$$

$$n = \dots$$

$$(2)$$

(Total for Question 11 is 4 marks)

12 The diagram shows a sector of a circle with radius 7 cm.

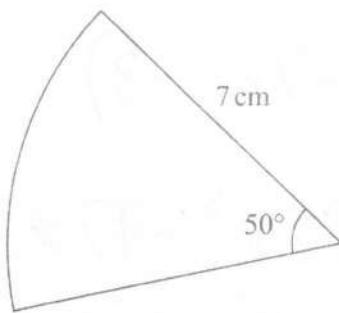


Diagram NOT
accurately drawn

Work out the length of the arc of the sector.
Give your answer correct to one decimal place.

$$\begin{aligned} \text{arc} &= 2 \times \pi \times 7 \times \frac{50}{360} \\ &= \frac{35\pi}{18} \\ &= 6.108\ldots \end{aligned}$$

6.1

cm

(Total for Question 12 is 2 marks)

P 6 5 9 1 4 A 0 1 2 2 8

13 Expand and simplify $4x(3x + 1)(2x - 3)$
Show your working clearly.

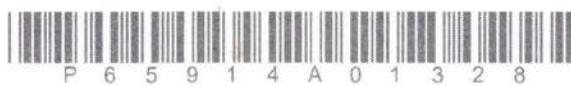
$$4x(6x^2 - 7x - 3)$$

$$24x^3 - 28x^2 - 12x$$

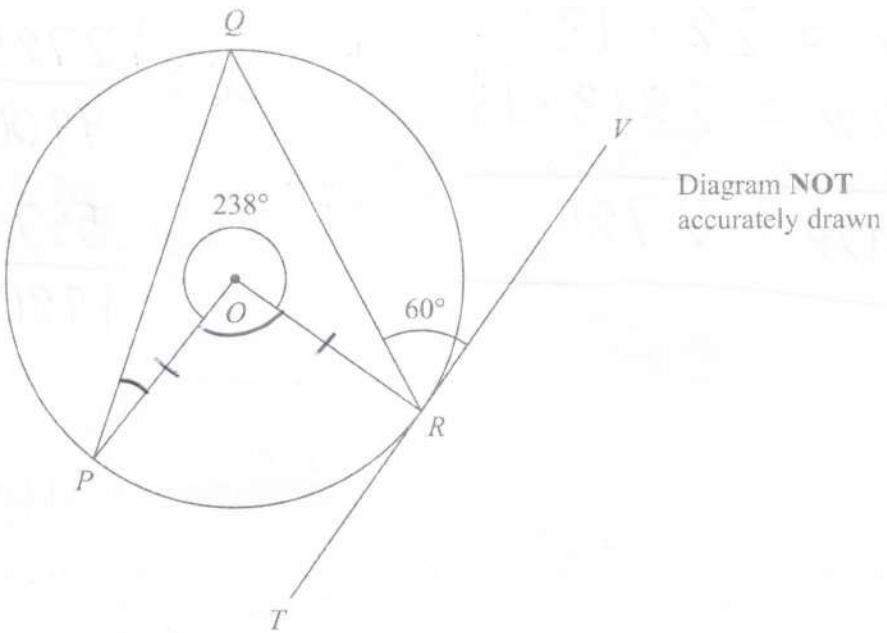
(Total for Question 13 is 3 marks)

14 Here is the number of goals that Henri's team scored one summer in each water polo match.

= 11



Find the interquartile range of the numbers of goals.
Show your working clearly.


$$16 - 9$$

$$= 7$$

(Total for Question 14 is 2 marks)

15 P , Q and R are points on a circle, centre O .
 TRV is the tangent to the circle at R .

Reflex angle $POR = 238^\circ$

Angle $QRV = 60^\circ$

Calculate the size of angle OPQ .

Give a reason for each stage of your working.

$\angle POR = 122$ (angles around a point Σ to 360)

$\angle PQR = 61$ (angle at the centre is twice the angle at the arc)

$\angle ORV = 30$ (tangent and radius meet at a right angle)

Angles in a quadrilateral sum to 360

$$\text{so } \angle OPQ = 360 - 238 - 61 - 30 \\ = 31$$

(Total for Question 15 is 4 marks)

16 Use algebra to show that the recurring decimal $0.28\dot{1}\dot{3} = \frac{557}{1980}$

$$\begin{aligned}
 100x &= 28 \cdot \dot{1}\dot{3} \\
 10000x &= 2813 \cdot \dot{1}\dot{3} \\
 \hline
 9900x &= 2785
 \end{aligned}
 \quad x = \frac{2785}{9900} = \frac{557}{1980}$$

(Total for Question 16 is 2 marks)

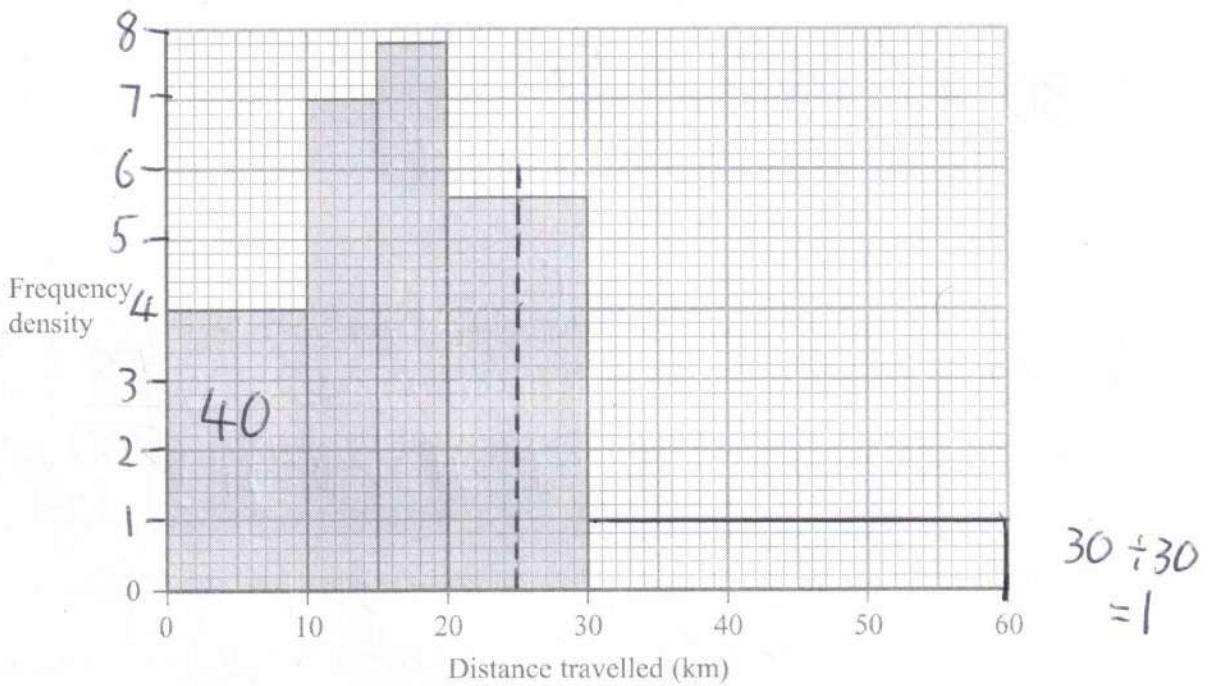
17 Using algebra, prove that, given any 3 consecutive even numbers, the difference between the square of the largest number and the square of the smallest number is always 8 times the middle number.

$$2n, \underline{2n+2}, 2n+4$$

$$(2n+4)^2 - (2n^2)$$

$$= \cancel{4n^2} + 16 + 16n - \cancel{4n^2}$$

$$\begin{aligned}
 &= 16n + 16 \\
 &\therefore 8(2n+2) \text{ as req'd}
 \end{aligned}$$


(Total for Question 17 is 3 marks)

18 The table and histogram give information about the distance travelled, in order to get to work, by each person working in a large store.

Distance (d km)	Frequency
$0 \leq d < 10$	40
$10 \leq d < 15$	35
$15 \leq d < 20$	39
$20 \leq d < 30$	56
$30 \leq d < 60$	30

$$\begin{aligned}5 \times 7 \\5 \times 7.8 \\10 \times 5.6\end{aligned}$$

Using the information in the table and in the histogram,

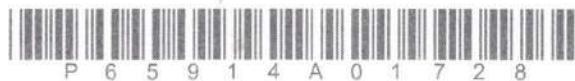
(a) complete the table.

(2)

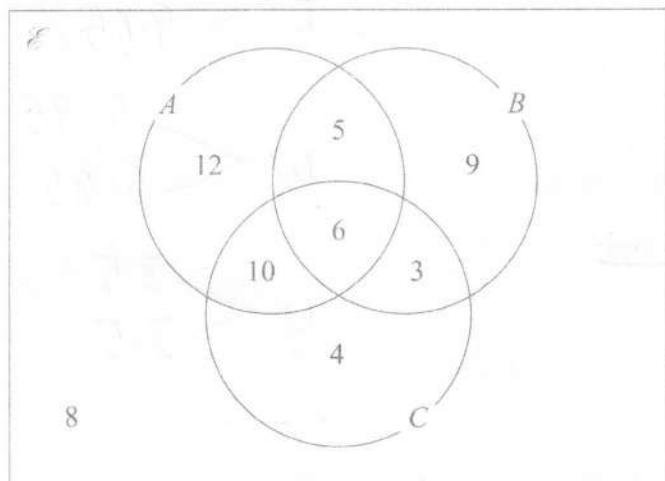
(b) complete the histogram.

(1)

One of the people working in the store is chosen at random.


(c) Work out an estimate for the probability that the distance travelled by this person, in order to get to work, was greater than 25 km.

$$30 + \left(\frac{1}{2} \times 56\right) = 58$$


$$\frac{58}{200}$$

(2)

(Total for Question 18 is 5 marks)

19 The Venn diagram shows a universal set, \mathcal{E} and sets A , B and C .

12, 5, 9, 10, 6, 3, 4 and 8 represent the numbers of elements.

Find

(i) $n(A \cup B)$

$$12 + 10 + 6 + 5 + 3 + 9 = 45$$

(1)

(ii) $n(A' \cap B')$ $\rightarrow 12, 10, \underline{4, 8}$

\downarrow
9, 3, 4, 8

$$4 + 8 = 12$$

(1)

(iii) $n([A \cap B] \cup C)$

$\overbrace{5, 6}$

$\rightarrow 4, 10(6)3$

$$5 + 6 + 4 + 10 + 3 = 28$$

(1)

(Total for Question 19 is 3 marks)

$$20 \quad P = \frac{t - w}{y}$$

$t = 9.7$ correct to 1 decimal place

$w = 5.9$ correct to 1 decimal place

$y = 3$ correct to 1 significant figure

$$t < \begin{matrix} 9.75 \\ 9.65 \end{matrix}$$

$$w < \begin{matrix} 5.95 \\ 5.85 \end{matrix}$$

$$y < \begin{matrix} 3.5 \\ 2.5 \end{matrix}$$

$$P \uparrow = \frac{t \uparrow - w \uparrow}{y \uparrow}$$

$$\frac{9.75 - 5.85}{2.5}$$

$$= \frac{39}{25}$$

$$= 1.56$$

(Total for Question 20 is 3 marks)

21 Given that $x = \frac{5}{9y+5}$ and that $y = \frac{5}{5a-2}$

find an expression for x in terms of a .

Give your expression as a single fraction in its simplest form.

$$x = \frac{5}{9\left(\frac{5}{5a-2}\right) + 5}$$

$$= \frac{15}{\frac{9 \cancel{5}}{5a-2} + \frac{5(5a-2)}{5a-2}}$$

$$= \frac{1}{\frac{9+5a-2}{5a-2}}$$

$$= \frac{1}{\frac{5a+7}{5a-2}}$$

$$x = \frac{5a-2}{5a+7}$$

(Total for Question 21 is 4 marks)

22 The diagram shows a triangular prism $ABCDEF$ with a horizontal base $ABEF$.

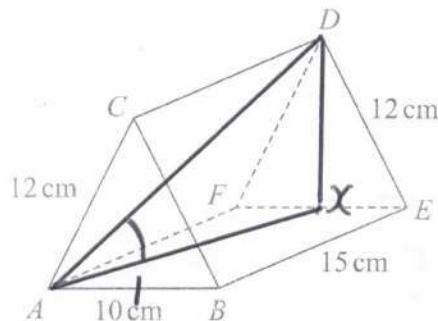
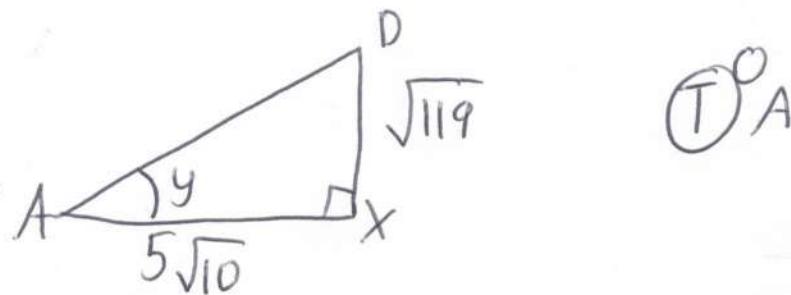


Diagram NOT
accurately drawn

$$AC = BC = FD = ED = 12 \text{ cm}$$

$$AB = 10 \text{ cm}$$


$$BE = 15 \text{ cm}$$

Calculate the size of the angle between AD and the base $ABEF$.

Give your answer correct to 3 significant figures.

$$AX = \sqrt{15^2 + 5^2} = \sqrt{250} = 5\sqrt{10}$$

$$DX = \sqrt{12^2 - 5^2} = \sqrt{119}$$

$$y = \tan^{-1}\left(\frac{\sqrt{119}}{5\sqrt{10}}\right)$$

$$= 34.602\dots$$

34.6

(Total for Question 22 is 4 marks)

23 The sum of the first N terms of an arithmetic series, S , is 292

The 2nd term of S is 8.5

The 5th term of S is 13

$$a + d = 8.5$$

Find the value of N .

Show clear algebraic working.

$$S_n = \frac{n}{2} [2a + (n-1)d] = 292$$

$$\begin{array}{r} a + 4d = 13 \\ a + d = 8.5 \\ \hline 3d = 4.5 \\ d = 1.5 \\ a = 7 \end{array}$$

$$\begin{aligned} S_n &= n [14 + (n-1) \times 1.5] = 584 \\ 14n + 1.5n^2 - 1.5n &= 584 \\ 3n^2 + 25n - 1168 &= 0 \end{aligned}$$

$$n = \frac{-25 \pm \sqrt{625 + 14016}}{6}$$

$$n = -\frac{73}{3} \text{ (reject)}$$

$$N = 16$$

(Total for Question 23 is 5 marks)

24 The functions f and g are defined as

$$f(x) = 5x^2 - 10x + 7 \quad \text{where } x \geq 1$$

$$g(x) = 7x - 6$$

(a) Find $fg(2)$

$$g(2) = 7 \times 2 - 6 \\ = 8$$

$$f(8) = 5(8^2) - 10(8) + 7 \\ = 247$$

(2)

(b) Express the inverse function f^{-1} in the form $f^{-1}(x) = \dots$

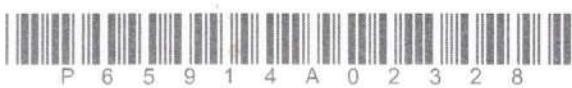
$$y = 5[x^2 - 2x] + 7$$

$$y = 5[(x-1)^2 - 1] + 7$$

$$y = 5(x-1)^2 + 2$$

$$y-2 = 5(x-1)^2$$

$$\frac{y-2}{5} = (x-1)^2$$


$$\pm \sqrt{\frac{y-2}{5}} = x-1$$

$$x = 1 \pm \sqrt{\frac{y-2}{5}}$$

$$f^{-1}(x) = 1 \pm \sqrt{\frac{x-2}{5}}$$

(4)

(Total for Question 24 is 6 marks)

25 The diagram shows two circles such that the region **R**, shown shaded in the diagram, is the region common to both circles.

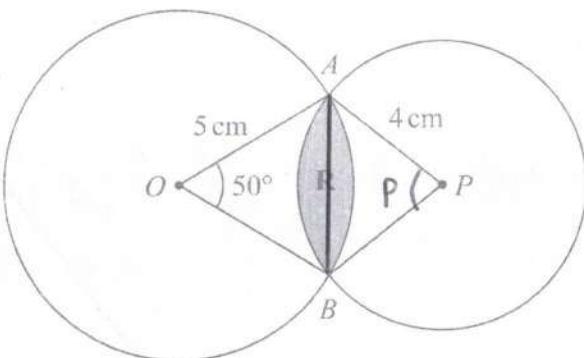


Diagram NOT
accurately drawn

One of the circles has centre O and radius 5 cm.

The other circle has centre P and radius 4 cm.

Angle $AOB = 50^\circ$

Calculate the area of region **R**.

Give your answer correct to 3 significant figures.

$$AB^2 = 5^2 + 5^2 - 2 \times 5 \times 5 \cos 50^\circ$$

$$AB = \sqrt{17.8606\ldots} = 4.226$$

$$\cos P = \frac{4^2 + 4^2 - 4.226^2}{2 \times 4 \times 4}$$

$$P = \cos^{-1}(0.4419\ldots) = 63.77^\circ$$

$$R = \left(\frac{50}{360} \times \pi \times 5^2 - \frac{1}{2} \times 5^2 \sin 50^\circ \right) + \left(\frac{63.77}{360} \times \pi \times 4^2 - \frac{1}{2} \times 4^2 \times \sin(63.77^\circ) \right)$$

$$R = 1.332\ldots + 1.727\ldots$$

$$= 3.06$$

26 $OACB$ is a trapezium.

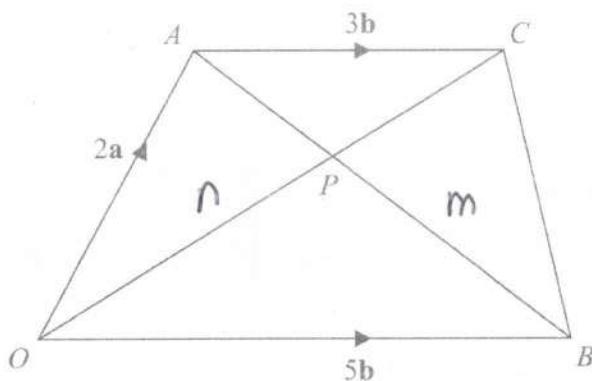


Diagram NOT
accurately drawn

$$\vec{OA} = 2\mathbf{a} \quad \vec{OB} = 5\mathbf{b} \quad \vec{AC} = 3\mathbf{b}$$

The diagonals, OC and AB , of the trapezium intersect at the point P .

Find and simplify an expression, in terms of \mathbf{a} and \mathbf{b} , for \vec{OP}
Show your working clearly.

$$\vec{OP} = n \times \vec{OC} = \underline{n(2\mathbf{a} + 3\mathbf{b})}$$

$$\vec{OP} = 5\mathbf{b} + m(\vec{BA}) = \underline{5\mathbf{b} + m(2\mathbf{a} - 5\mathbf{b})}$$

At P : equate a : $2n = 2m$ so $n = m$

" b : $3n = 5 - 5m$

$$\Rightarrow 3m = 5 - 5m$$

$$8m = 5$$

$$m = n = \frac{5}{8}$$

$$\vec{OP} = \frac{5}{8}(2\mathbf{a} + 3\mathbf{b}) = \frac{5}{4}\mathbf{a} + \frac{15}{8}\mathbf{b}$$

