


Answer ALL TWENTY FOUR questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

1 (a)



Write down the inequality shown on the number line:

$$x > -3$$

(1)

(b) Solve the inequality  $4y - 13 \leq y + 8$

$$3y \leq 21$$

$$y \leq 7$$

(2)

(Total for Question 1 is 3 marks)

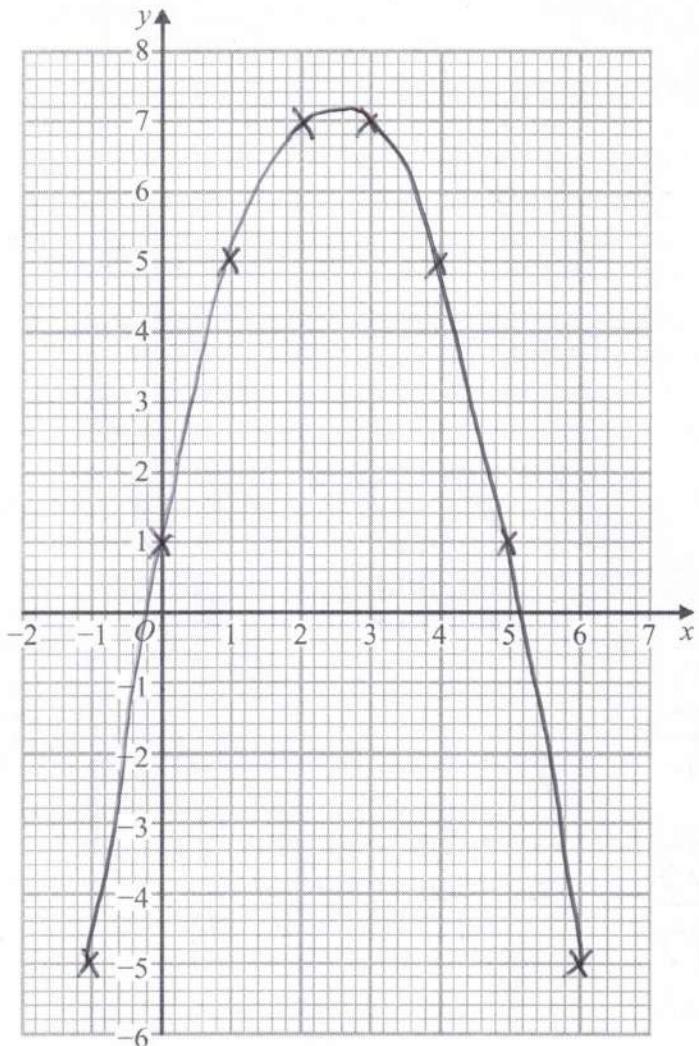
2 Show that  $5\frac{2}{3} - 2\frac{3}{4} = 2\frac{11}{12}$

$$= \frac{17}{3} - \frac{11}{4}$$

$$= \frac{68}{12} - \frac{33}{12} = \frac{35}{12} = 2\frac{11}{12}$$

(Total for Question 2 is 3 marks)




P 6 0 2 6 1 A 0 3 2 4

3 (a) Complete the table of values for  $y = 1 + 5x - x^2$

|     |    |   |   |   |   |   |   |    |
|-----|----|---|---|---|---|---|---|----|
| $x$ | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6  |
| $y$ | -5 | 1 | 5 | 7 | 7 | 5 | 1 | -5 |

(2)

(b) On the grid, draw the graph of  $y = 1 + 5x - x^2$  for values of  $x$  from -1 to 6



(2)

(Total for Question 3 is 4 marks)



4  $ABC$  and  $DEF$  are similar triangles.

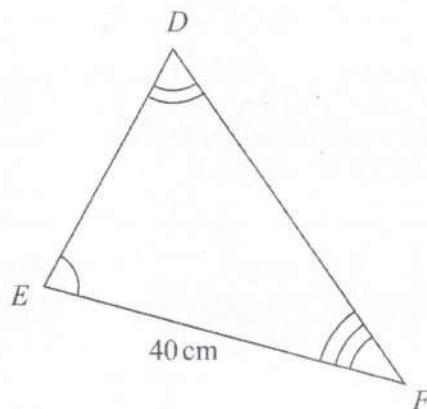
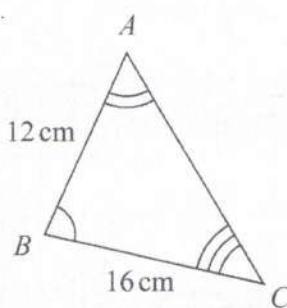




Diagram NOT  
accurately drawn

(a) Work out the length of  $DE$ .

$$40 \div 16 = 2.5$$

$$12 \times 2.5$$

30

cm

(2)

The area of triangle  $DEF$  is  $525 \text{ cm}^2$

(b) Find the area of triangle  $DEF$  in  $\text{m}^2$

$$525 \div 100^2$$

$$0.0525$$

$\text{m}^2$

(2)

(Total for Question 4 is 4 marks)

5 Factorise  $x^2 - 5x - 36$

$$(x+4)(x-9)$$

(Total for Question 5 is 2 marks)



6 There are some ice lollies in a freezer.

The flavour of each ice lolly is banana or strawberry or mint or chocolate.

Julius takes at random an ice lolly from the freezer.

The table shows the probabilities that the flavour of the ice lolly that Julius takes is banana or strawberry or chocolate.

| Flavour     | banana | strawberry | mint | chocolate |
|-------------|--------|------------|------|-----------|
| Probability | 0.35   | 0.32       | 0.21 | 0.12      |

Work out the probability that the flavour of the ice lolly that Julius takes is either strawberry or mint.

0.53

0.53

(Total for Question 6 is 3 marks)

7 A football team played 55 games.

Each game was won, drawn or lost.

number of games won : number of games drawn : number of games lost = 6 : 3 : 2


Work out how many more games the team won than the team lost.

11

$$\text{difference} = \frac{6-2}{11} \times 55$$

20

(Total for Question 7 is 3 marks)



8

$$A = 3^2 \times 5^4 \times 7 \quad B = 3^4 \times 5^3 \times 7 \times 11$$

(a) Find the highest common factor (HCF) of  $A$  and  $B$ .

$$HCF = 3^2 \times 5^3 \times 7$$

$$7875$$

(2)

(b) Find the lowest common multiple (LCM) of  $A$  and  $B$ .

$$LCM = 7875 \times 3^2 \times 5 \times 11$$

$$3898125$$

(2)

(Total for Question 8 is 4 marks)

9 (a) Write 840 000 in standard form.

$$8.4 \times 10^5$$

(1)

(b) Work out  $(6 \times 10^7) \div (8 \times 10^{-2})$

Give your answer in standard form.

$$0.75 \times 10^9$$

$$7.5 \times 10^8$$

(2)

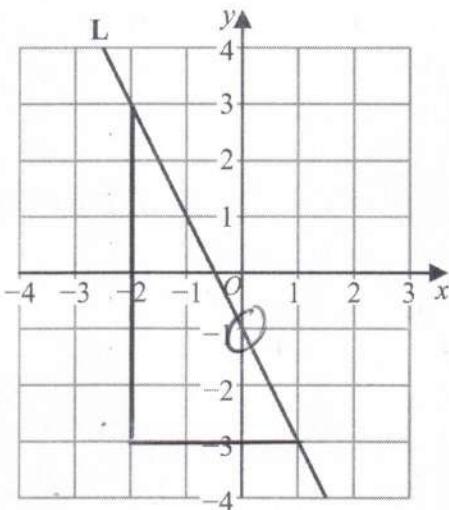
(Total for Question 9 is 3 marks)



10 Henri buys a yacht for 150 000 euros.

The yacht depreciates in value by 18% each year.

Work out the value of the yacht at the end of 3 years.  
Give your answer correct to the nearest euro.


$$150000 \times 0.82^3 = 82705.2$$

82705

..... euros

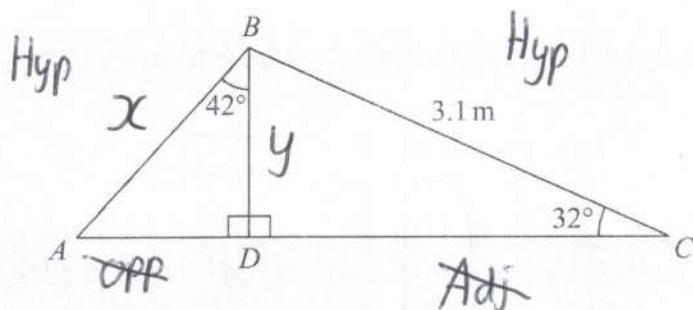
(Total for Question 10 is 3 marks)

11 Line L is drawn on the grid.



$$c = -1$$

$$m = -\frac{6}{3} = -2$$


Find an equation for L.

$$y = -2x - 1$$

(Total for Question 11 is 3 marks)



12

Diagram NOT  
accurately drawnCalculate the length of  $AB$ .

Show your working clearly.

Give your answer correct to 3 significant figures.S<sub>H</sub>O

$$y = \sin 32^\circ \times 3.1 = 1.6427\ldots$$

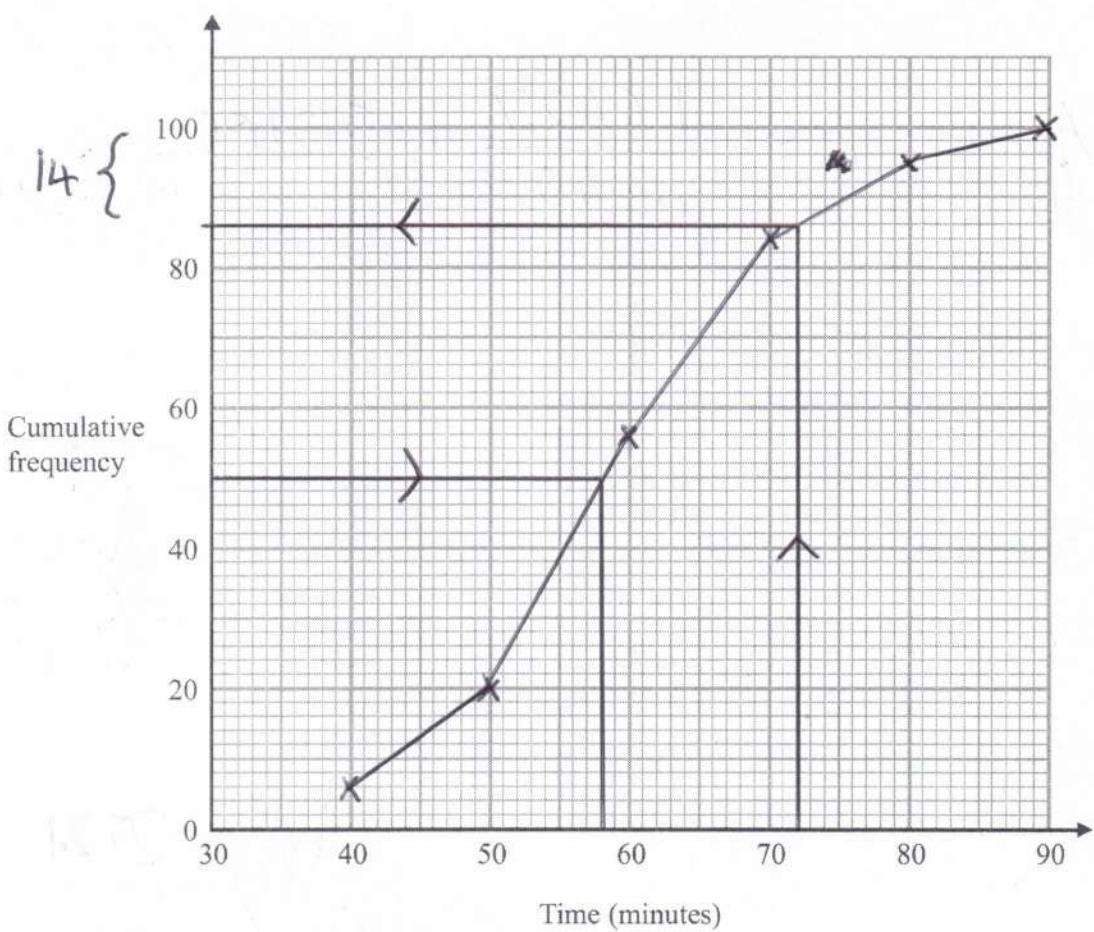

C<sub>H</sub>A

$$x = \frac{1.6427}{\cos 42^\circ} = 2.2105\ldots$$

2.21

m

(Total for Question 12 is 5 marks)




13 Sandeep recorded the length of time, in minutes, that each of 100 adults went for a walk one Saturday afternoon.

The cumulative frequency table gives information about these times.

| Time ( $t$ minutes) | Cumulative frequency |
|---------------------|----------------------|
| $30 < t \leq 40$    | 6                    |
| $30 < t \leq 50$    | 20                   |
| $30 < t \leq 60$    | 56                   |
| $30 < t \leq 70$    | 84                   |
| $30 < t \leq 80$    | 95                   |
| $30 < t \leq 90$    | 100                  |

(a) On the grid, draw a cumulative frequency graph for the information in the table.



(2)



(b) Use your graph to find an estimate for the median length of time that these adults went for a walk.

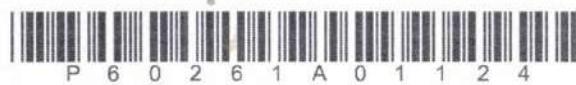
$[\text{ms } 58 \rightarrow 59]$

58

..... minutes

(2)

One of the 100 adults is chosen at random.


(c) Use your graph to find an estimate for the probability that this adult went for a walk for more than 72 minutes.

$[\text{ms } 12 \rightarrow 14$   
walkers]

$\frac{14}{100}$

(3)

(Total for Question 13 is 7 marks)



14 (a) Simplify fully  $(x^{12}y^8)^{\frac{3}{4}}$

$$\textcircled{x} \quad 12x \frac{3}{4} = 8$$

$$\textcircled{y} \quad 8x \frac{3}{4} = 6$$

$$x^9 y^6$$

(2)

Given that  $3^n = \frac{3^x}{9^y}$

(b) find an expression for  $n$  in terms of  $x$  and  $y$ .

$$= \frac{3^x}{(3^2)^y}$$

$$= \frac{3^x}{3^{2y}} = 3^{x-2y}$$

$$n = x - 2y$$

(2)

(Total for Question 14 is 4 marks)



15  $A, B, C$  and  $D$  are points on a circle, centre  $O$ .

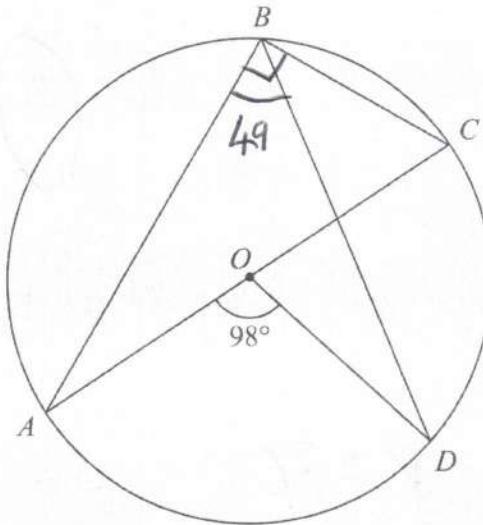



Diagram **NOT**  
accurately drawn

$AOC$  is a diameter of the circle.

Angle  $AOD = 98^\circ$

Work out the size of angle  $DBC$ .

Give a reason for each stage in your working.

$\angle ABD = 49$  (angle at centre is twice at the circumference)

$\angle ABC = 90^\circ$  (angle in semicircle is a right angle)

$$\angle DBC = 90 - 49$$

41

(Total for Question 15 is 4 marks)



16 The following table gives values of  $x$  and  $y$  where  $y$  is inversely proportional to the square of  $x$ .

|     |     |   |   |      |
|-----|-----|---|---|------|
| $x$ | 1.5 | 2 | 3 | 4    |
| $y$ | 16  | 9 | 4 | 2.25 |

(a) Find a formula for  $y$  in terms of  $x$ .

$$y = \frac{K}{x^2}$$

$$4 = \frac{K}{3^2} \quad K = 36$$

$$y = \frac{36}{x^2}$$

(3)

Given that  $x > 0$

(b) find the value of  $x$  when  $y = 144$

$$144 = \frac{36}{x^2}$$

$$x^2 = \frac{1}{4}$$

$$x = \frac{1}{2}$$

(2)

(Total for Question 16 is 5 marks)



17 The table gives information about the first six terms of a sequence of numbers.

| Term number      | 1                      | 2                      | 3                      | 4                      | 5                      | 6                      |
|------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| Term of sequence | $\frac{1 \times 2}{2}$ | $\frac{2 \times 3}{2}$ | $\frac{3 \times 4}{2}$ | $\frac{4 \times 5}{2}$ | $\frac{5 \times 6}{2}$ | $\frac{6 \times 7}{2}$ |

Prove algebraically that the sum of any two consecutive terms of this sequence is always a square number.

$$\text{Sequence} = \frac{n(n+1)}{2} \text{ etc}$$

$$\begin{aligned} \text{Consecutive} &= \frac{n(n+1)}{2} + \frac{(n+1)(n+2)}{2} \\ &= \frac{n^2 + n + n^2 + 3n + 2}{2} \\ &= \frac{2n^2 + 4n + 2}{2} \\ &= n^2 + 2n + 1 \\ &= (n+1)^2 \\ &= \text{square number} \end{aligned}$$

(Total for Question 17 is 4 marks)



18 The functions  $f$  and  $g$  are defined as

$$f(x) = \frac{x}{4x-3} \text{ and } g(x) = x-5$$

(a) State which value of  $x$  must be excluded from any domain of the function  $f$ .

$$4x-3 \neq 0$$

$$\frac{3}{4}$$

(1)

(b) Find  $fg(x)$ .

Simplify your answer.

$$f(x-5)$$

$$\begin{aligned} &= \frac{x-5}{4(x-5)-3} \\ &= \frac{x-5}{4x-20-3} \end{aligned}$$

$$\frac{x-5}{4x-23}$$

 $fg(x) =$ 

(2)

(c) Express the inverse function  $f^{-1}$  in the form  $f^{-1}(x) = \dots$

$$y = \frac{x}{4x-3}$$

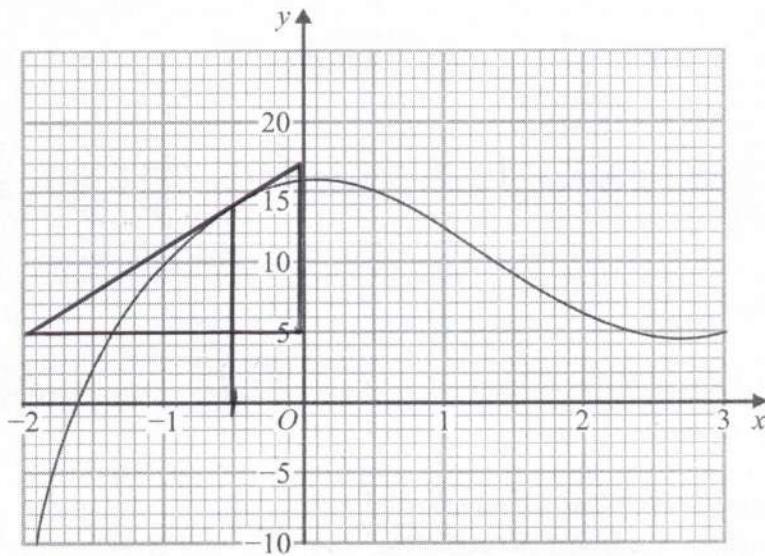
$$x = \frac{3y}{4y-1}$$

$$y(4x-3) = x$$

$$4xy-3y = x$$

$$4xy-x = 3y$$

$$x(4y-1) = 3y$$


$$\frac{3x}{4x-1}$$

 $f^{-1}(x) =$ 

(3)



Part of the curve with equation  $y = h(x)$  is shown on the grid.



(d) Find an estimate for the gradient of the curve at the point where  $x = -0.5$   
Show your working clearly.

$$m = \frac{12}{2} = 6$$

$[ms: 5 \rightarrow 7]$

6

(3)

(Total for Question 18 is 9 marks)



19 The diagram shows a sector  $OAPB$  of a circle, centre  $O$ .

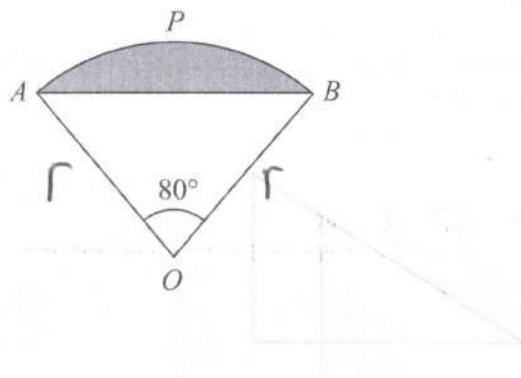



Diagram NOT  
accurately drawn

$AB$  is a chord of the circle.

Angle  $AOB = 80^\circ$

The area of sector  $OAPB$  is  $\frac{25}{2}\pi\text{cm}^2$

Work out the perimeter of the shaded segment.

Give your answer correct to 3 significant figures.

$$\text{Area sector} = \pi \times r^2 \times \frac{80}{360} = \frac{25}{2}\pi$$

$$r^2 = \frac{225}{4}$$

$$r = \frac{15}{2}$$

$$AB^2 = \left(\frac{15}{2}\right)^2 + \left(\frac{15}{2}\right)^2 - 2 \times \frac{15}{2} \times \frac{15}{2} \times \cos 80^\circ$$

$$AB = \sqrt{92.964\ldots} = 9.6418\ldots$$

$$\begin{aligned} \text{Shaded perimeter} &= 9.6418 + \left(2 \times \pi \times \frac{15}{2} \times \frac{80}{360}\right) \\ &= 20.113\ldots \end{aligned}$$

20.1

cm

(Total for Question 19 is 6 marks)



20

$$x = \frac{6a}{b-a}$$

$a = 3.46$  correct to 3 significant figures.

$b = 6.3$  correct to 1 decimal place.

Work out the upper bound for the value of  $x$ .

Give your answer as a decimal correct to 3 significant figures.

Show your working clearly.

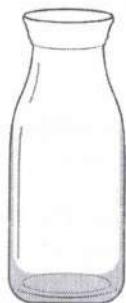
$$\textcircled{a} \quad 3.46 < \begin{matrix} 3.465 \\ 3.455 \end{matrix}$$

$$\textcircled{b} \quad 6.3 < \begin{matrix} 6.35 \\ 6.25 \end{matrix}$$

$$\text{UB } x = \frac{6a\uparrow}{b\uparrow - a\uparrow}$$

$$\text{U} \quad \frac{6 \times 3.465}{6.25 - 3.465} = 7.46499\dots$$

7.46


(Total for Question 20 is 3 marks)



21 The diagram shows two similar bottles, A and B.



A



B

Diagram NOT  
accurately drawn

Bottle A has surface area  $240 \text{ cm}^2$

Bottle B has surface area  $540 \text{ cm}^2$  and volume  $2025 \text{ cm}^3$

Work out the volume of bottle A.

$$\text{SA scale factor} = \frac{540}{240} = \frac{9}{4}$$

$$\text{Linear sf} = \sqrt{\frac{9}{4}} = \frac{3}{2}$$

$$\text{Volume sf} = \left(\frac{3}{2}\right)^3 = \frac{27}{8}$$

$$2025 \div \frac{27}{8} = 600 \text{ cm}^3$$

(Total for Question 21 is 3 marks)



22 Write  $5 + 12x - 2x^2$  in the form  $a + b(x + c)^2$  where  $a, b$  and  $c$  are integers.

$$-2[x^2 - 6x] + 5$$

$$-2[(x-3)^2 - 9] + 5$$

$$-2(x-3)^2 + 18 + 5$$

$$-2(x-3)^2 + 23$$

$$23 - 2(x-3)^2$$

(Total for Question 22 is 4 marks)



23 The diagram shows a solid pyramid  $ABCDE$  with a horizontal base.

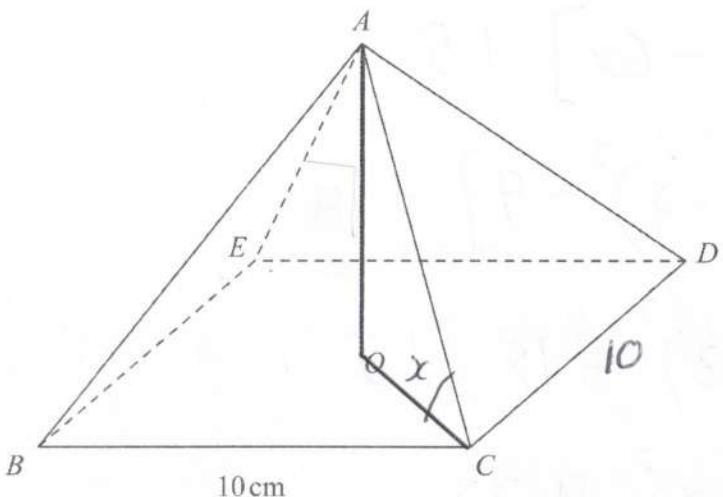



Diagram NOT  
accurately drawn

The base,  $BCDE$ , of the pyramid is a square of side 10 cm.

The vertex  $A$  of the pyramid is vertically above the centre  $O$  of the base so that  $AB = AC = AD = AE$

The **total** surface area of the pyramid is  $360 \text{ cm}^2$

Work out the size of the angle between  $AC$  and the base  $BCDE$ .  
Give your answer correct to 3 significant figures.

$$\text{Surface Area} = 4 \times \triangle + \square$$

$$360 = 4 \times \frac{1}{2} \times 10 \times h + 10 \times 10$$

$$260 = 20h$$

$$h = 13$$

$$AC = \sqrt{13^2 + 5^2} = \sqrt{194}$$

$$OC = \sqrt{5^2 + 5^2} = 5\sqrt{2}$$





$$x = \cos^{-1} \left( \frac{5\sqrt{2}}{\sqrt{194}} \right)$$

$$= 59.491\ldots$$

59.5

(Total for Question 23 is 6 marks)

Turn over for Question 24



24 A box contains marbles.

4 of the marbles are red.

The rest of the marbles are yellow.

Antonia takes at random a marble from the box and does not replace it.  
Sergio then takes at random a marble from the box.

The probability that Antonia and Sergio both take a yellow marble is  $0.7 = \frac{7}{10}$

Work out how many marbles were originally in the box.  
Show your working clearly.

R  
4

Y  
 $x-4$

$$P(YY) = \frac{x-4}{x} \times \frac{x-5}{x-1} = \frac{7}{10}$$

$$10(x^2 - 9x + 20) = 7x(x-1)$$

$$10x^2 - 90x + 200 = 7x^2 - 7x$$

$$3x^2 - 83x + 200 = 0$$

$$\frac{83 \pm \sqrt{83^2 - 4 \times 3 \times 200}}{6}$$

$$x = \frac{8}{3} \rightarrow \text{reject}$$

$$x = 25$$

(Total for Question 24 is 5 marks)

**TOTAL FOR PAPER IS 100 MARKS**

