


| <b>Q</b>                                                                                    | <b>Answer</b>                                                                           | <b>Mark</b> | <b>Comments</b>                                                                                                                                             |
|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                                                                           | ( $12^2 =$ ) 144<br>or<br>( $\sqrt{36} =$ ) 6 or ( $\frac{1}{3} \times \sqrt{36} =$ ) 2 | M1          | implied by correct answer<br>accept ( $\sqrt{36} =$ ) $\pm 6$ or ( $\frac{1}{3} \times \sqrt{36} =$ ) $\pm 2$                                               |
|                                                                                             | ( $12^2 =$ ) 144<br>and<br>( $\frac{1}{3} \times \sqrt{36} =$ ) 2                       | M1dep       | implied by correct answer<br>$144 \times \frac{1}{2}$<br>or $\frac{432}{6}$ oe fraction implies M1M1<br>accept ( $\frac{1}{3} \times \sqrt{36} =$ ) $\pm 2$ |
|                                                                                             | 72                                                                                      | A1          | accept $\pm 72$<br>SC2 288                                                                                                                                  |
|                                                                                             | <b>Additional Guidance</b>                                                              |             |                                                                                                                                                             |
| –72 only                                                                                    |                                                                                         |             | M1M1A0                                                                                                                                                      |
| Condone missing brackets if recovered<br>eg $12^2 \div \frac{1}{3} \times 6$ with answer 72 |                                                                                         |             | M1M1A1                                                                                                                                                      |
| $\frac{144}{\frac{1}{3} \times 6}$ with no further correct work                             |                                                                                         |             | M1M0A0                                                                                                                                                      |
| Using a decimal for $\frac{1}{3}$ must be recovered                                         |                                                                                         |             |                                                                                                                                                             |

| <b>Q</b> | <b>Answer</b> | <b>Mark</b> | <b>Comments</b> |
|----------|---------------|-------------|-----------------|
| 2        | [31, 34]      | B1          |                 |

| <b>Q</b> | <b>Answer</b>                                                                   | <b>Mark</b> | <b>Comments</b> |
|----------|---------------------------------------------------------------------------------|-------------|-----------------|
| <b>3</b> | $\begin{pmatrix} 3 \\ -7 \end{pmatrix}$                                         | B1          |                 |
|          | <b>Additional Guidance</b>                                                      |             |                 |
|          | Condone + sign and/or fraction line eg $\begin{pmatrix} +3 \\ -7 \end{pmatrix}$ | B1          |                 |
|          | (3, -7)                                                                         | B0          |                 |

| <b>Q</b>    | <b>Answer</b> | <b>Mark</b> | <b>Comments</b> |
|-------------|---------------|-------------|-----------------|
| <b>4(a)</b> | 8350          | B1          |                 |

| <b>Q</b>    | <b>Answer</b> | <b>Mark</b> | <b>Comments</b> |
|-------------|---------------|-------------|-----------------|
| <b>4(b)</b> | 8449          | B1          |                 |

| Q                                    | Answer                                                                                                         | Mark | Comments                                                                                                  |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------|
| 5(a)                                 | <p>Fully correct diagram</p>  | B3   | <p>B2 two or three correct numbers in correct positions<br/>B1 one correct number in correct position</p> |
| <b>Additional Guidance</b>           |                                                                                                                |      |                                                                                                           |
| Only mark the numbers in the diagram |                                                                                                                |      |                                                                                                           |

| Q                                                              | Answer                                                                 | Mark | Comments                                                       |
|----------------------------------------------------------------|------------------------------------------------------------------------|------|----------------------------------------------------------------|
| 5(b)                                                           | $\frac{7}{22}$ or 0.318(...) or 31.8(...)%                             | B1ft | oe fraction, decimal or percentage correct or ft their diagram |
|                                                                | <b>Additional Guidance</b>                                             |      |                                                                |
|                                                                | Answer as a ratio with or without $\frac{7}{22}$ seen                  |      |                                                                |
|                                                                | Answer in words with $\frac{7}{22}$ seen                               |      |                                                                |
|                                                                | Answer in words without $\frac{7}{22}$ seen                            |      |                                                                |
|                                                                | $\frac{7}{22}$ seen with incorrect conversion to decimal or percentage |      |                                                                |
| Ignore any attempt to simplify or convert their $\frac{7}{22}$ |                                                                        |      | B1ft                                                           |

| <b>Q</b>                                    | <b>Answer</b>                                                 | <b>Mark</b> | <b>Comments</b>                                 |
|---------------------------------------------|---------------------------------------------------------------|-------------|-------------------------------------------------|
| <b>6a</b>                                   | At least 3 points correctly plotted                           | M1          | $\pm \frac{1}{2}$ square                        |
|                                             | All 4 points correctly plotted and joined with straight lines | A1          | $\pm \frac{1}{2}$ square<br>lines may be dashed |
| <b>Additional Guidance</b>                  |                                                               |             |                                                 |
| Mark intention for straight lines           |                                                               |             |                                                 |
| Condone one continuous, smooth curve        |                                                               |             |                                                 |
| Ignore the graph before 2015 and after 2022 |                                                               |             |                                                 |
| Ignore a line of best fit                   |                                                               |             |                                                 |

| <b>Q</b>                                                                  | <b>Answer</b>              | <b>Mark</b> | <b>Comments</b> |
|---------------------------------------------------------------------------|----------------------------|-------------|-----------------|
| <b>6b</b>                                                                 | [82, 90]                   | B1          |                 |
|                                                                           | <b>Additional Guidance</b> |             |                 |
| Answer in range with or without working, with no graph or incorrect graph |                            |             | B1              |

| <b>Q</b>                                                                      | <b>Answer</b>                                                                                                | <b>Mark</b> | <b>Comments</b>                                                                                                               |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------|
|                                                                               | Correct statement                                                                                            | B1          | eg she used the height instead of the slant height<br>or<br>she used the vertical height<br>or<br>she used 12 (instead of 13) |
| <b>Additional Guidance</b>                                                    |                                                                                                              |             |                                                                                                                               |
| Check diagram                                                                 |                                                                                                              |             |                                                                                                                               |
| For 'vertical' accept anything that implies she has used the wrong height     |                                                                                                              |             |                                                                                                                               |
| Condone 'length' to mean 'height' or 'slant height'                           |                                                                                                              |             |                                                                                                                               |
| 12 or 13 circled on the diagram must be accompanied by a supporting statement |                                                                                                              |             |                                                                                                                               |
| 7a                                                                            | Indicates '12' in the calculation                                                                            | B1          |                                                                                                                               |
|                                                                               | She should have done $\pi \times 5 \times 13$                                                                | B1          |                                                                                                                               |
|                                                                               | It should be $65\pi$                                                                                         | B1          |                                                                                                                               |
|                                                                               | She used the wrong height / the (value of) $l$ is wrong                                                      | B1          |                                                                                                                               |
|                                                                               | She hasn't used the slant height (she used the (vertical) height)                                            | B1          |                                                                                                                               |
|                                                                               | She hasn't used the 13                                                                                       | B1          |                                                                                                                               |
|                                                                               | She hasn't used the 13 and should be $5 \times 12 \times 13 \times \pi$                                      | B0          |                                                                                                                               |
|                                                                               | The multiplication used the wrong number(s)                                                                  | B0          |                                                                                                                               |
|                                                                               | She hasn't used a value for $\pi$                                                                            | B0          |                                                                                                                               |
|                                                                               | An incorrect statement with a correct statement<br>eg she used 13 instead of 12 and didn't square the radius | B0          |                                                                                                                               |

| <b>Q</b>                   | <b>Answer</b>                                                     | <b>Mark</b> | <b>Comments</b>                                        |  |
|----------------------------|-------------------------------------------------------------------|-------------|--------------------------------------------------------|--|
| <b>7b</b>                  | $\pi \times 5 \times 5$ or $25\pi$<br>or<br>$3 \times 5 \times 5$ | M1          | oe<br>accept [3.14, 3.142] or $\frac{22}{7}$ for $\pi$ |  |
|                            | 75                                                                |             | A1                                                     |  |
| <b>Additional Guidance</b> |                                                                   |             |                                                        |  |
| $\pi 25$                   |                                                                   |             | M1                                                     |  |

| <b>Q</b>  | <b>Answer</b>                                                                                                                                               | <b>Mark</b> | <b>Comments</b>                                                                                                                                                 |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>7c</b> | 'More than' indicated or implied by statement<br>and<br>valid reason                                                                                        | B1          | eg valid reasons<br>3.14 is greater (than 3)<br>Beth's number is bigger (than Adam's)<br>(the correct answer is) 78.5 (with their answer to (b) less than 78.5) |
|           | <b>Additional Guidance</b>                                                                                                                                  |             |                                                                                                                                                                 |
|           | If calculations are used, the outcomes must be correct                                                                                                      |             |                                                                                                                                                                 |
|           | Accept 78 or 79 for 78.5 unless from incorrect working                                                                                                      |             |                                                                                                                                                                 |
|           | 'Less than' indicated                                                                                                                                       |             | B0                                                                                                                                                              |
|           | Do not penalise use of the same incorrect formula in (b) and (c)<br>eg $3 \times 10 = 30$ in (b) and $3.14 \times 10 = 31.4$ in (c) with 'More than' ticked |             | B1                                                                                                                                                              |
|           | Ignore a non-contradictory reason with a correct reason<br>eg 3.14 is bigger than 3 and nearer the true value of pi                                         |             | B1                                                                                                                                                              |
|           | <b>Acceptable reasons</b>                                                                                                                                   |             |                                                                                                                                                                 |
|           | Adam has rounded (pi) down / Adam only used 3                                                                                                               |             | B1                                                                                                                                                              |
|           | There is an extra 0.14 to multiply by                                                                                                                       |             | B1                                                                                                                                                              |
|           | Her number has decimal places                                                                                                                               |             | B1                                                                                                                                                              |
|           | Her number is to more significant figures                                                                                                                   |             | B1                                                                                                                                                              |
|           | <b>Non-acceptable reasons</b>                                                                                                                               |             |                                                                                                                                                                 |
|           | 3.14 will give a bigger answer / 3.14 is more accurate                                                                                                      |             | B0                                                                                                                                                              |

| <b>Q</b> | <b>Answer</b>                                                                                                                                                                                                 | <b>Mark</b> | <b>Comments</b>                                                              |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------|
| 8        | $7x - 4x$ or $3x$<br>or $4x - 7x$ or $-3x$<br>or<br>$-22 - 29$ or $-51$<br>or $22 + 29$ or $51$                                                                                                               | M1          |                                                                              |
|          | $3x = 51$<br>or $-3x = -51$                                                                                                                                                                                   |             | $\frac{51}{3}$ or $\frac{-51}{-3}$ implies M1A1<br>implied by correct answer |
|          | 17                                                                                                                                                                                                            | A1ft        | ft M1A0 from an equation of the form<br>$\pm 3x = a$ or $bx = \pm 51$        |
|          | <b>Additional Guidance</b>                                                                                                                                                                                    |             |                                                                              |
|          | Trial and improvement scores 0 or 3                                                                                                                                                                           |             |                                                                              |
|          | If a follow through answer does not simplify to an integer, accept it as a fraction, mixed number or decimal to at least 1dp.<br><br>eg from $3x = 7$ accept $\frac{7}{3}$ or $2\frac{1}{3}$ or 2.3 or better | M1A0A1ft    |                                                                              |
|          | Ignore any attempt to convert a correct ft fraction                                                                                                                                                           |             |                                                                              |
|          | Embedded answer                                                                                                                                                                                               | M1A1A0      |                                                                              |

| <b>Q</b>                                                            | <b>Answer</b>                          | <b>Mark</b> | <b>Comments</b>                                                                                                                                    |
|---------------------------------------------------------------------|----------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 9                                                                   | $\frac{26(0)}{16.4}$                   | M1          | oe eg $\frac{13}{8.2}$ or $1\frac{9.6}{16.4}$                                                                                                      |
|                                                                     | $\frac{260}{164}$ or $1\frac{96}{164}$ | A1          | oe with no decimals eg $\frac{130}{82}$ or $\frac{2600}{1640}$<br>implied by correct answer                                                        |
|                                                                     | $\frac{65}{41}$ or $1\frac{24}{41}$    | B1ft        | ft correct simplification of their fraction using the digits 26 and 164<br>SC2 $\frac{41}{65}$<br>SC1 $\frac{65}{106}$ (total area as denominator) |
|                                                                     | <b>Additional Guidance</b>             |             |                                                                                                                                                    |
| Ignore units                                                        |                                        |             |                                                                                                                                                    |
| Ignore an incorrect conversion of $\frac{65}{41}$ to a mixed number |                                        |             | M1A1B1                                                                                                                                             |
| $\frac{26(0)}{16.4} = \frac{2600}{164} = \frac{650}{41}$            |                                        |             | M1A0B1ft                                                                                                                                           |

| <b>Q</b>         | <b>Answer</b>                                                                                                | <b>Mark</b> | <b>Comments</b>                                    |
|------------------|--------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------|
| 10a              | Line joining open circles above, on or below -2 and 4                                                        | B1          | condone arrows on a correct line with open circles |
|                  | <b>Additional Guidance</b>                                                                                   |             |                                                    |
|                  | Mark intention                                                                                               |             |                                                    |
|                  | If the student has drawn the circles on the line, they must have drawn their own line connecting the circles |             |                                                    |
| Closed circle(s) |                                                                                                              |             | B0                                                 |

| <b>Q</b>                                                           | <b>Answer</b>                                                                                                                                       | <b>Mark</b> | <b>Comments</b>                                                                      |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------|
|                                                                    | $5y \geq 11 - 14$ or $5y \geq -3$<br>or<br>$14 - 11 \geq -5y$ or $3 \geq -5y$<br>or<br>$y + \frac{14}{5} \geq \frac{11}{5}$<br>or<br>$-\frac{3}{5}$ | M1          | oe fractions or decimals<br><br><br><br><br>may be seen in an equation or inequality |
| 10b                                                                | $y \geq -\frac{3}{5}$ or $-\frac{3}{5} \leq y$                                                                                                      | A1          | oe fraction or decimal for $-\frac{3}{5}$                                            |
| <b>Additional Guidance</b>                                         |                                                                                                                                                     |             |                                                                                      |
| Allow use of other inequality signs or = if recovered              |                                                                                                                                                     |             |                                                                                      |
| Accept any letter for $y$                                          |                                                                                                                                                     |             |                                                                                      |
| Condone $\frac{-3}{5}$ or $\frac{3}{-5}$ for $-\frac{3}{5}$        |                                                                                                                                                     |             |                                                                                      |
| Ignore any attempt to convert $-\frac{3}{5}$ to a decimal          |                                                                                                                                                     |             |                                                                                      |
| $y \geq -\frac{3}{5}$ in working and $-\frac{3}{5}$ on answer line |                                                                                                                                                     |             | M1A0                                                                                 |

| <b>Q</b>                   | <b>Answer</b>                                                        | <b>Mark</b> | <b>Comments</b>            |
|----------------------------|----------------------------------------------------------------------|-------------|----------------------------|
|                            | Enlarge(ment)                                                        | B1          |                            |
|                            | $\frac{1}{2}$                                                        | B1          | oe condone half            |
|                            | (1, -7)                                                              | B1          | condone missing bracket(s) |
| <b>Additional Guidance</b> |                                                                      |             |                            |
| 11                         | For the third mark, a vector on its own does not imply a translation |             |                            |
|                            | Do not accept halved or half the size                                |             |                            |
|                            | Multiple transformations stated or implied                           |             |                            |
|                            |                                                                      |             |                            |

| Q                                                                                          | Answer                                                                         | Mark  | Comments                                                                                                 |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------|
| 12                                                                                         | $2 \times 12 \times \pi$ or $24\pi$<br>or<br>$\frac{60}{360}$ or division by 6 | M1    | oe<br>accept [3.14, 3.142] or $\frac{22}{7}$ for $\pi$<br>accept use of 0.17 or better for $\frac{1}{6}$ |
|                                                                                            | $\frac{60}{360} \times 2 \times 12 \times \pi$                                 | M1dep | oe eg $\frac{24\pi}{6}$                                                                                  |
|                                                                                            | 4 $\pi$                                                                        | A1    | condone $\pi 4$                                                                                          |
| <b>Additional Guidance</b>                                                                 |                                                                                |       |                                                                                                          |
| Answer $24\pi$ from $\pi \times 12^2 \times \frac{60}{360}$ scores M1 for $\frac{60}{360}$ |                                                                                |       | M1M0A0                                                                                                   |

| Q                                                                                   | Answer                                                                                                                                                                                                                                                                                                                                                                                                                      | Mark | Comments                                                                                           |  |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------|--|
| 13                                                                                  | Fully correct diagram with all these 6 conditions met<br><ul style="list-style-type: none"> <li>• Line length 6 cm from <math>B</math></li> <li>• Line perpendicular to <math>AB</math> from <math>B</math></li> <li>• Line length 7 cm parallel to <math>AB</math></li> <li>• Area of pentagon = <math>54 \text{ cm}^2</math></li> <li>• Pentagon has exactly one line of symmetry</li> <li>• Labelled pentagon</li> </ul> | B4   | B3 5 conditions met<br>B2 4 conditions met<br>B1 3 conditions met<br><br>condone label $E$ missing |  |
|                                                                                     | <b>Additional Guidance</b>                                                                                                                                                                                                                                                                                                                                                                                                  |      |                                                                                                    |  |
|                                                                                     | Mark intention                                                                                                                                                                                                                                                                                                                                                                                                              |      |                                                                                                    |  |
| Ignore any lines inside the shape eg lines of symmetry                              |                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                                                                                    |  |
| A diagram that is not a pentagon can only meet the first 3 conditions               |                                                                                                                                                                                                                                                                                                                                                                                                                             |      | B0 or B1                                                                                           |  |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                                                                                    |  |

| Q  | Answer                                                                                           | Mark  | Comments                                                                                                                                           |
|----|--------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 14 | <b>Alternative method 1: elimination</b>                                                         |       |                                                                                                                                                    |
|    | at least one correct equation                                                                    | M1    | eg<br>$4x + 3y = 4.7(0)$ or $5x + y = 4.5(0)$ or<br>$15x + 3y = 13.5(0)$<br>or<br>$9x + 4y = 9.2(0)$<br>may work in pounds or pence<br>any letters |
|    | correctly multiplies one or two correct equations to equate coefficients of $x$ or $y$           | M1dep | eg<br>$4x + 3y = 4.7(0)$ and<br>$15x + 3y = 13.5(0)$<br>or<br>$20x + 15y = 23.5(0)$ and<br>$20x + 4y = 18.(00)$                                    |
|    | correctly adds or subtracts correct equations to eliminate one variable                          | M1dep | eg<br>$11x = 8.8(0)$<br>or<br>$11y = 5.5(0)$<br>may be implied by one correct value of $x$ or $y$ with M2 scored                                   |
|    | chocolate bar £0.80 and packet of mints £0.50<br>or<br>chocolate bar 80p and packet of mints 50p | A1    | correct money notation<br>condone £0.80p and £0.50p                                                                                                |

Question 14 continues on the next page

|                                                                                                                       |                                                                                                   |       |                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14<br>cont                                                                                                            | <b>Alternative method 2: substitution</b>                                                         |       |                                                                                                                                                                                                                                                    |
|                                                                                                                       | $4x + 3y = 4.7(0)$ or $5x + y = 4.5(0)$<br>or<br>$15x + 3y = 13.5(0)$<br>or<br>$9x + 4y = 9.2(0)$ | M1    | oe<br>may work in pounds or pence<br>any letters                                                                                                                                                                                                   |
|                                                                                                                       | correctly makes $x$ or $y$ the subject of a correct equation                                      | M1dep | eg<br>$x = \frac{4.7(0) - 3y}{4}$ or $x = \frac{4.5(0) - y}{5}$<br>or<br>$y = \frac{4.7(0) - 4x}{3}$ or $y = 4.5(0) - 5x$                                                                                                                          |
|                                                                                                                       | correctly substitutes to eliminate a variable                                                     | M1dep | eg<br>$5 \frac{(4.7(0) - 3y)}{4} + y = 4.5(0)$<br>or $4 \frac{(4.5(0) - y)}{5} + 3y = 4.7(0)$<br>or $5x + \frac{4.7(0) - 4x}{3} = 4.5(0)$<br>or $4x + 3(4.5(0) - 5x) = 4.7(0)$<br>may be implied by one correct value of $x$ or $y$ with M2 scored |
|                                                                                                                       | chocolate bar £0.80 and packet of mints £0.50<br>or<br>chocolate bar 80p and packet of mints 50p  | A1    | correct money notation<br>condone £0.80p and £0.50p                                                                                                                                                                                                |
| <b>Additional Guidance</b>                                                                                            |                                                                                                   |       |                                                                                                                                                                                                                                                    |
| Up to M3 may be awarded for correct work with no answer or incorrect answer if this is seen amongst multiple attempts |                                                                                                   |       |                                                                                                                                                                                                                                                    |
| Condone multiple letters in equations eg $cb$ for $x$                                                                 |                                                                                                   |       |                                                                                                                                                                                                                                                    |
| Trial and improvement is 0, 3 (incorrect money notation) or 4 (fully correct)                                         |                                                                                                   |       |                                                                                                                                                                                                                                                    |
| Final answer chocolate bar £0.8 and packet of mints £0.5                                                              |                                                                                                   | M3A0  |                                                                                                                                                                                                                                                    |
| Final answer chocolate bar 0.80p and packet of mints 0.50p                                                            |                                                                                                   | M3A0  |                                                                                                                                                                                                                                                    |

| <b>Q</b>     | <b>Answer</b>                 | <b>Mark</b> | <b>Comments</b> |
|--------------|-------------------------------|-------------|-----------------|
| <b>15(a)</b> | 14 and 15                     | B1          | either order    |
|              | <b>Additional Guidance</b>    |             |                 |
|              | Ignore incorrect calculations |             |                 |
|              | Answer $14^2$ and $15^2$      |             | B0              |

| <b>Q</b>     | <b>Answer</b>                                                                                                | <b>Mark</b> | <b>Comments</b> |
|--------------|--------------------------------------------------------------------------------------------------------------|-------------|-----------------|
| <b>15(b)</b> | $2^7$ or 128<br>or<br>$7^3$ or 343<br>or<br>$(5 \times) \sqrt[3]{1\ 000\ 000}$ or $(5 \times) 100$<br>or 500 | M1          |                 |
|              | At least two of 128, 343 and 500<br>or<br>471                                                                |             | A1              |
|              | 471 and 500                                                                                                  |             | A1              |

| <b>Q</b>                                                                                                                                     | <b>Answer</b>                                                        | <b>Mark</b> | <b>Comments</b>                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16                                                                                                                                           | A correct comparison of the average age of the two clubs             | B1          | eg the average (age) of the cyclists was higher/older<br>the median (age) of the swimming club was lower/younger, (so the average was lower/younger) |
|                                                                                                                                              | A correct comparison of the consistency of the ages of the two clubs | B1          | eg the cycling club has more consistent ages<br>the interquartile range of the swimming club was higher, so they were less consistent in age         |
| <b>Additional Guidance</b>                                                                                                                   |                                                                      |             |                                                                                                                                                      |
| Statements must be comparisons<br>eg1 (the average age at) the cycling club was higher<br>eg2 (the average age at) the cycling club was high |                                                                      | B1<br>B0    |                                                                                                                                                      |
| Statements reversed                                                                                                                          |                                                                      | B0          |                                                                                                                                                      |
| Do not allow incorrect values supporting statements                                                                                          |                                                                      |             |                                                                                                                                                      |
| Ignore non-contradictory statements with correct statements                                                                                  |                                                                      |             |                                                                                                                                                      |
| <b>Average age statements</b>                                                                                                                |                                                                      |             |                                                                                                                                                      |
| The swimming club are (8.5 years) younger (on average)                                                                                       |                                                                      | B1          |                                                                                                                                                      |
| Cycling club members are (8.5 years) older (on average)                                                                                      |                                                                      | B1          |                                                                                                                                                      |
| Younger people prefer swimming (to cycling)                                                                                                  |                                                                      | B1          |                                                                                                                                                      |
| Young people prefer swimming (to cycling)                                                                                                    |                                                                      | B0          |                                                                                                                                                      |
| Average age has 8.5 years difference                                                                                                         |                                                                      | B0          |                                                                                                                                                      |
| The cycling club has more older people                                                                                                       |                                                                      | B0          |                                                                                                                                                      |

**Additional guidance for this question continues on the next page**

| Q                                                                             | Additional Guidance cont |  |
|-------------------------------------------------------------------------------|--------------------------|--|
| <b>Consistency statements</b>                                                 |                          |  |
| The cycling club is more consistent / has better consistency                  | B1                       |  |
| There is a smaller (interquartile) range for cycling, so it's more consistent | B1                       |  |
| Ages of the cycling club are closer together                                  | B1                       |  |
| Consistency at the cycling club is bigger                                     | B1                       |  |
| Consistency at the cycling club is smaller                                    | B0                       |  |
| More people are in the same age group in the cycling club                     | B0                       |  |
| The difference in interquartile range is 2.7                                  | B0                       |  |
| The swimming club had a higher (interquartile) range                          | B0                       |  |
| The swimming club had a higher range of ages                                  | B0                       |  |
| More of an age gap / age range in the swimming club than the cycling club     | B0                       |  |

| Q                                                                                                                        | Answer                                          | Mark  | Comments                                                     |
|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------|--------------------------------------------------------------|
| <b>Alternative method 1: multiplies by <math>x</math> first</b>                                                          |                                                 |       |                                                              |
|                                                                                                                          | $xy = 3x + 7$                                   | M1    | allow $yx$ for $xy$ throughout                               |
|                                                                                                                          | $xy - 3x = 7$<br>or $3x - xy = -7$              | M1dep | oe collection of terms                                       |
| $x(y - 3) = 7$<br>or<br>$x(3 - y) = -7$<br>or<br>$\frac{7}{y - 3}$ or $\frac{-7}{3 - y}$                                 |                                                 | M1dep |                                                              |
| $x = \frac{7}{y - 3}$ or $x = \frac{-7}{3 - y}$                                                                          |                                                 | A1    | oe in the form $x =$<br>may have brackets on the denominator |
| <b>Alternative method 2: splits up the fraction first</b>                                                                |                                                 |       |                                                              |
|                                                                                                                          | $y = 3 + \frac{7}{x}$ or $y - \frac{7}{x} = 3$  | M1    | allow $\frac{3x}{x}$ for 3                                   |
|                                                                                                                          | $y - 3 = \frac{7}{x}$ or $3 - y = -\frac{7}{x}$ | M1dep |                                                              |
| $\frac{1}{y - 3} = \frac{x}{7}$<br>or $x(y - 3) = 7$ or $x(3 - y) = -7$<br>or<br>$\frac{7}{y - 3}$ or $\frac{-7}{3 - y}$ |                                                 | M1dep |                                                              |
|                                                                                                                          | $x = \frac{7}{y - 3}$ or $x = \frac{-7}{3 - y}$ | A1    | oe in the form $x =$<br>may have brackets on the denominator |

**Additional guidance for this question is on the next page**

| <b>Additional Guidance</b> |                                                                                                                       |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------|
| 17<br>cont                 | Up to M2 may be awarded for correct work with no answer or incorrect answer if this is seen amongst multiple attempts |
|                            | $\frac{7}{y-3}$ on answer line with $x = \frac{7}{y-3}$ in working                                                    |
|                            | Allow the equation with $x$ on the right, eg $\frac{7}{y-3} = x$                                                      |
|                            | Condone $x = 7/y - 3$ if not from incorrect working                                                                   |
|                            | Allow appropriate $\times$ or $\div$ signs throughout for up to M3                                                    |

| Q  | Answer                                                         | Mark | Comments    |
|----|----------------------------------------------------------------|------|-------------|
| 18 | $x^2 + y^2 = 6^2$ or $x^2 + y^2 = 36$                          | B1   | oe equation |
|    | <b>Additional Guidance</b>                                     |      |             |
|    | $x^2 + y^2 = 6^2$ followed by an incorrect evaluation of $6^2$ | B1   |             |
|    | Condone $x^2 + y^2 = r^2$ and $r = 6$                          | B1   |             |

| Q  | Answer                                                                                   | Mark  | Comments                                                                                                                                    |
|----|------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 19 | <b>Alternative method 1: expressing <math>C</math> in terms of <math>A</math></b>        |       |                                                                                                                                             |
|    | $(C =) \frac{5}{2}A$                                                                     | M1    | oe eg $(C =) A + 1.5A$ or $(C =) 2.5A$                                                                                                      |
|    | $\left(\frac{C}{B} =\right) \frac{\frac{5}{2}A}{\frac{7}{4}A}$                           | M1dep | oe fraction with $A$ on numerator and denominator<br>eg $\left(\frac{C}{B} =\right) \frac{2.5A}{1.75A}$ or $\frac{5}{2}A \div \frac{7}{4}A$ |
|    | $\left(\frac{C}{B} =\right) \frac{\frac{5}{2}}{\frac{7}{4}}$<br>or<br>$14C = 20B$        | M1dep | oe fraction with $A$ eliminated<br>eg $\left(\frac{C}{B} =\right) \frac{2.5}{1.75}$<br>oe method to eliminate $A$                           |
|    | $\frac{10}{7}$ or $1\frac{3}{7}$                                                         | A1    | oe fraction<br>SC3 $\frac{7}{10}$ oe fraction with $A$ eliminated<br>SC2 $\frac{6}{7}$ oe fraction with $A$ eliminated                      |
|    | <b>Alternative method 2: using a value for <math>A</math></b>                            |       |                                                                                                                                             |
|    | Chooses a value for $A$ works out the correct value of $B$ or $C$                        | M1    | eg $A = 100$ and $B = 175$<br>or $A = 20$ and $C = 50$                                                                                      |
|    | Chooses a value for $A$ and works out correct values for $B$ and $C$                     | M1dep | eg $A = 10$ and $B = 17.5$ and $C = 25$                                                                                                     |
|    | Puts the correct values for $B$ and $C$ into fraction form (may have non-integer values) | M1dep | oe eg $\frac{25}{17.5}$                                                                                                                     |
|    | $\frac{10}{7}$ or $1\frac{3}{7}$                                                         | A1    | oe fraction eg $\frac{250}{175}$<br>SC3 $\frac{7}{10}$ oe fraction with $A$ eliminated<br>SC2 $\frac{6}{7}$ oe fraction with $A$ eliminated |

**Additional guidance for this question is on the next page**

| <b>Additional Guidance</b> |                                                                                                                                                       |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19<br>cont                 | Ignore an incorrect conversion of $\frac{10}{7}$ to a mixed number                                                                                    |
|                            | $\frac{6}{7}$ is from taking $C$ as $1.5A$                                                                                                            |
|                            | Condone the inclusion of $B$ in the fraction eg $(C = )\frac{10}{7}(\times) B$ or $(C = )\frac{10B}{7}$                                               |
|                            | Alt 2 The chosen value of $A$ does not need to be explicitly stated if method is shown and working is unambiguous or values are in correct proportion |

| <b>Q</b> | <b>Answer</b>                                     | <b>Mark</b> | <b>Comments</b> |
|----------|---------------------------------------------------|-------------|-----------------|
| 20       | $a = -3$                                          | B1          |                 |
|          | 8<br>or<br>(their $-3)^2 - 1$ correctly evaluated | B1ft        |                 |
|          | 4<br>or<br>their $8 \div 2$ correctly evaluated   | B1ft        |                 |
|          | <b>Additional Guidance</b>                        |             |                 |
|          | $a = -3 \ b = -10 \ c = -5$                       |             | B1B0B1ft        |

| Q  | Answer                                                                                                                                                                                               | Mark  | Comments                                                                                          |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------|
| 21 | <b>Alternative method 1: using <math>x = 1.018\dots</math></b>                                                                                                                                       |       |                                                                                                   |
|    | Multiplication by power of 10                                                                                                                                                                        | M1    | eg $10x = 10.18\dots$<br>or $100x = 101.81\dots$<br>or $1000x = 1018.18\dots$<br>any or no letter |
|    | Correct equation formed from subtraction of two equations to eliminate recurring digits                                                                                                              | M1dep | eg $99x = 100.8$<br>or $990x = 1008$<br>or $x = \frac{1008}{990}$                                 |
|    | $(x =) \frac{1008}{990}$ and $\frac{56}{55}$<br>with no incorrect working                                                                                                                            | A1    | oe from using different powers of 10                                                              |
|    | <b>Alternative method 2: using <math>x = 0.018\dots</math></b>                                                                                                                                       |       |                                                                                                   |
|    | Multiplication by power of 10                                                                                                                                                                        | M1    | eg $10x = 0.1818\dots$<br>or $100x = 1.818\dots$<br>or $1000x = 18.18\dots$<br>any or no letter   |
|    | Correct equation formed from subtraction of two equations to eliminate recurring digits                                                                                                              | M1dep | eg $99x = 1.8$<br>or $990x = 18$<br>or $x = \frac{1.8}{99}$                                       |
|    | $(x =) \frac{1.8}{99}$ or $\frac{18}{990}$<br>and $(x =) \frac{1}{55}$ and $\frac{56}{55}$<br><b>or</b><br>$\frac{100.8}{99}$ or $\frac{1008}{990}$ and $\frac{56}{55}$<br>with no incorrect working | A1    | oe from using different powers of 10                                                              |

Question 21 continues on the next page

| Q          | Answer                                                                                                                | Mark                                                                                                                           | Comments                                                                                          |
|------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| 21<br>cont | <b>Alternative method 3: using <math>x = 1.018\dots</math> and addition</b>                                           |                                                                                                                                |                                                                                                   |
|            | Multiplication by power of 10                                                                                         | M1                                                                                                                             | eg $10x = 10.18\dots$<br>or $100x = 101.81\dots$<br>or $1000x = 1018.18\dots$<br>any or no letter |
|            | Correct addition of two correct equations leading to 0.9 recurring                                                    | M1dep                                                                                                                          | eg $110x = 111.99\dots$<br>or $1100x = 1119.99\dots$                                              |
|            | $(x =) \frac{112}{110}$ and $\frac{56}{55}$<br>with no incorrect working                                              | A1                                                                                                                             | oe from using different powers of 10                                                              |
|            | <b>Additional Guidance</b>                                                                                            |                                                                                                                                |                                                                                                   |
|            | Up to M2 may be awarded for correct work with no answer or incorrect answer if this is seen amongst multiple attempts |                                                                                                                                |                                                                                                   |
|            | For all marks, numbers must be correct                                                                                |                                                                                                                                |                                                                                                   |
|            |                                                                                                                       | Working with $1.018018018\dots$ scores 0                                                                                       |                                                                                                   |
|            |                                                                                                                       | Recurring decimals should be denoted by correct notation or at least two of the recurring digits followed by at least two dots |                                                                                                   |
|            |                                                                                                                       | In alt1 and alt2 condone incorrect recurring notation if the result of the subtraction is a correct equation                   |                                                                                                   |

| Q                                                                                                                           | Answer                                                           | Mark  | Comments                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------|
| <b>Alternative method 1: drawing <math>AO</math> and <math>BO</math> and sum of angles in a quadrilateral</b>               |                                                                  |       |                                                                                            |
|                                                                                                                             | $PBO = 90$<br>or<br>$PAO = 90$                                   | M1    | may be seen on diagram or implied by subsequent working<br>accept rectangle drawn at angle |
|                                                                                                                             | $360 - 90 - 90 - 24$<br>or<br>$156$                              | M1dep | oe eg $180 - 24$ or $90 - 12$<br>may be seen on diagram                                    |
|                                                                                                                             | 78                                                               | A1    |                                                                                            |
| <b>Alternative method 2: drawing <math>AO</math> and <math>BO</math> and using circle theorems</b>                          |                                                                  |       |                                                                                            |
|                                                                                                                             | $AOB = 2x$                                                       | M1    | may be seen on diagram                                                                     |
|                                                                                                                             | $2x = 156$                                                       | M1dep |                                                                                            |
|                                                                                                                             | 78                                                               | A1    |                                                                                            |
| <b>Alternative method 3: drawing <math>AB</math>, sum of angles in a triangle and alt segment</b>                           |                                                                  |       |                                                                                            |
| 22                                                                                                                          | $2PAB + 24 = 180$<br>or<br>$2PBA + 24 = 180$                     | M1    |                                                                                            |
|                                                                                                                             | $(180 - 24) \div 2$ or $78$<br>or<br>$(180 - 24) \div 2$ or $78$ | M1dep | may be seen on diagram                                                                     |
|                                                                                                                             | $x = 78$                                                         | A1    |                                                                                            |
| <b>Alternative method 4: drawing <math>PO</math> and <math>AO</math> or <math>BO</math> and sum of angles in a triangle</b> |                                                                  |       |                                                                                            |
|                                                                                                                             | $PBO = 90$<br>or<br>$PAO = 90$                                   | M1    | may be seen on diagram or implied by subsequent working<br>accept rectangle drawn at angle |
|                                                                                                                             | $180 - 90 - 12$<br>or<br>$78$                                    | M1dep | oe eg $90 - 12$<br>may be seen on diagram                                                  |
|                                                                                                                             | 78                                                               | A1    |                                                                                            |

Additional guidance for this question is on the next page

| <b>Q</b>                 | <b>Answer</b>                         | <b>Mark</b> | <b>Comments</b> |
|--------------------------|---------------------------------------|-------------|-----------------|
| <b>22</b><br><b>cont</b> | <b>Additional Guidance</b>            |             |                 |
|                          | Answer 78                             |             | M1M1A1          |
|                          | Working takes precedence over diagram |             |                 |

| <b>Q</b>     | <b>Answer</b>                                                       | <b>Mark</b> | <b>Comments</b>             |
|--------------|---------------------------------------------------------------------|-------------|-----------------------------|
| <b>23(a)</b> | $\frac{25}{16}$ or $1\frac{9}{16}$                                  | B1          | oe with no surds or indices |
|              | <b>Additional Guidance</b>                                          |             |                             |
|              | Ignore an incorrect conversion of $\frac{25}{16}$ to a mixed number |             |                             |
|              | $\frac{5\sqrt{5}\sqrt{5}}{16}$ or $\frac{5^2}{16}$                  |             | B0                          |

| Q     | Answer                                                                                                                                                                                                                                                 | Mark  | Comments                                                                                                                     |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------|
| 23(b) | $4 + 2\sqrt{3} + 2\sqrt{3} + (\sqrt{3})^2$ or $4 + 4\sqrt{3} + (\sqrt{3})^2$ or $7 + 4\sqrt{3}$                                                                                                                                                        | M1    | oe<br>4 terms with at least 3 correct<br>or 3 terms with 2 correct including $4\sqrt{3}$<br>terms may be seen in a grid      |
|       | $7 \times 2 + 7\sqrt{3} + 2 \times 4\sqrt{3} + 4\sqrt{3} \times \sqrt{3}$ or<br>$8 + 8\sqrt{3} + 6 + 4\sqrt{3} + 4 \times 3 + 3\sqrt{3}$ or<br>$14 + 7\sqrt{3} + 8\sqrt{3} + 12$ or<br>$8 + 4\sqrt{3} + 4\sqrt{3} + 6 + 4\sqrt{3} + 6 + 6 + 3\sqrt{3}$ |       | oe<br>full expansion with correct multiplication of their 2, 3 or 4 terms by $(2 + \sqrt{3})$<br>terms may be seen in a grid |
|       | $8 + 4\sqrt{3} + 4\sqrt{3} + 6 + 4\sqrt{3} + 6 + 6 + 3\sqrt{3}$ and $26 + 15\sqrt{3}$ or<br>$14 + 7\sqrt{3} + 8\sqrt{3} + 12$ and $26 + 15\sqrt{3}$                                                                                                    | M1dep | oe with full expansion<br>terms may be seen in a grid<br>condone $15\sqrt{3} + 26$                                           |
|       | <b>Additional Guidance</b>                                                                                                                                                                                                                             |       |                                                                                                                              |
|       | Remember that the answer is given in the question                                                                                                                                                                                                      | A1    |                                                                                                                              |
|       |                                                                                                                                                                                                                                                        |       | 3 may be seen as $(\sqrt{3})^2$ for M1 only                                                                                  |
|       | Condone missing brackets if multiplications are correct                                                                                                                                                                                                |       |                                                                                                                              |

| <b>Q</b>                                                                                                     | <b>Answer</b>                                                                                                                                                                         | <b>Mark</b> | <b>Comments</b>                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 24(a)                                                                                                        | $2k^2 + 3 - (9k + 7) (= 1)$<br>or $2k^2 - 9k - 4 (= 1)$                                                                                                                               | M1          | oe eg $9k + 7 + 1 = 2k^2 + 3$<br>or $9k + 8 = 2k^2 + 3$                                                                               |
|                                                                                                              | $2k^2 - 9k - 5 (= 0)$                                                                                                                                                                 | A1          | terms in any order<br>implied by $k = 5$ (and $-\frac{1}{2}$ ) or correct answer                                                      |
|                                                                                                              | $(2k + 1)(k - 5) (= 0)$<br>or<br>$(k =) \frac{-9 \pm \sqrt{9^2 - 4 \times 2 \times -5}}{2 \times 2}$<br>or<br>$(k =) \frac{9 \pm \sqrt{121}}{4}$<br>or $(k =) 2.25 \pm \sqrt{7.5625}$ | M1          | oe correct factorisation<br>or correct use of quadratic formula<br>or correct use of completing the square for their 3-term quadratic |
|                                                                                                              | $(k =) 5$ (or $-\frac{1}{2}$ )                                                                                                                                                        | A1ft        | ft at least one solution for their 3-term quadratic<br>implied by correct answer                                                      |
|                                                                                                              | 54                                                                                                                                                                                    | A1          |                                                                                                                                       |
|                                                                                                              | <b>Additional Guidance</b>                                                                                                                                                            |             |                                                                                                                                       |
| Answer 54 not from incorrect working                                                                         |                                                                                                                                                                                       |             | 5 marks                                                                                                                               |
| Trial and improvement scores 0 or 5                                                                          |                                                                                                                                                                                       |             |                                                                                                                                       |
| Use of inequalities can score up to M0A0M1A1ftA0                                                             |                                                                                                                                                                                       |             |                                                                                                                                       |
| Condone 52, 53, 54 on answer line                                                                            |                                                                                                                                                                                       |             | 5 marks                                                                                                                               |
| 54 and 4.5                                                                                                   |                                                                                                                                                                                       |             | 4 marks                                                                                                                               |
| $2k^2 + 3 - 9k + 7 (= 1)$<br>$2k^2 - 9k + 9 (= 0)$<br>$(2k - 3)(k - 3) (= 0)$<br>$k = 3$ (or $\frac{3}{2}$ ) |                                                                                                                                                                                       |             | M0<br>A0<br>M1<br>A1ft<br>A0                                                                                                          |
| 22                                                                                                           |                                                                                                                                                                                       |             |                                                                                                                                       |

| Q                                                 | Answer                                                                                                             | Mark | Comments                                                                                    |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------|
| <b>Alternative method 1</b>                       |                                                                                                                    |      |                                                                                             |
|                                                   | $(\sqrt{x} + 1)^2$ or $(\sqrt{x} + 1)(\sqrt{x} + 1)$                                                               | M1   |                                                                                             |
|                                                   | $(\sqrt{x} + 1)^2$ or $(\sqrt{x} + 1)(\sqrt{x} + 1)$<br>and $x + \sqrt{x} + \sqrt{x} + 1$<br>$= x + 2\sqrt{x} + 1$ | A1   | SC1 takes any square number and shows that $x + 2\sqrt{x} + 1$ gives the next square number |
| <b>Alternative method 2</b>                       |                                                                                                                    |      |                                                                                             |
|                                                   | $x = n^2$                                                                                                          | M1   | any letter for $n$ except $x$                                                               |
|                                                   | $(n + 1)^2 = n^2 + 2n + 1$<br>$= x + 2\sqrt{x} + 1$                                                                | A1   | SC1 takes any square number and shows that $x + 2\sqrt{x} + 1$ gives the next square number |
| <b>Alternative method 3</b>                       |                                                                                                                    |      |                                                                                             |
|                                                   | $x = n^2$                                                                                                          | M1   | any letter for $n$ except $x$                                                               |
|                                                   | $n^2 + 2\sqrt{n^2} + 1 = n^2 + 2n + 1$<br>and<br>$(n + 1)^2$                                                       | A1   | SC1 takes any square number and shows that $x + 2\sqrt{x} + 1$ gives the next square number |
| <b>Additional Guidance</b>                        |                                                                                                                    |      |                                                                                             |
| Remember that the answer is given in the question |                                                                                                                    |      |                                                                                             |
| eg for SC1                                        | $x = 9, 9 + 2 \times 3 + 1 = 16$                                                                                   |      | SC1                                                                                         |
|                                                   | Allow $x^{\frac{1}{2}}$ for $\sqrt{x}$ throughout                                                                  |      |                                                                                             |
|                                                   | If only multiplication in a grid is seen then this is not sufficient for A1                                        |      |                                                                                             |

| Q                                                                                                                                                                                                                                                                                                                                                         | Answer                                                                                                                                                                                                                                                                                                                                              | Mark  | Comments                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------|
| <b>Alternative method 1: substitutes values</b>                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                     |       |                                                       |
| $(\sin 30^\circ =) \frac{1}{2}$ <p>or <math>6 \sin 30^\circ = 3</math></p> <p>or</p> $(\cos 30^\circ =) \frac{\sqrt{3}}{2}$ <p>or <math>2 \cos 30^\circ = \sqrt{3}</math></p> <p>or</p> $(\tan 30^\circ =) \frac{1}{\sqrt{3}} \text{ or } \frac{\sqrt{3}}{3}$ <p>or <math>4 \tan 30^\circ = \frac{4}{\sqrt{3}} \text{ or } \frac{4\sqrt{3}}{3}</math></p> |                                                                                                                                                                                                                                                                                                                                                     | M1    | may be seen beside the given expression or in a table |
| 25                                                                                                                                                                                                                                                                                                                                                        | $6\left(\frac{1}{2}\right) \text{ and } 2\left(\frac{\sqrt{3}}{2}\right) \text{ and } 4\left(\frac{1}{\sqrt{3}}\right)$ <p>or</p> $6\left(\frac{1}{2}\right) \text{ and } 2\left(\frac{\sqrt{3}}{2}\right) \text{ and } 4\left(\frac{\sqrt{3}}{3}\right)$ <p>or</p> $\frac{6}{2} \text{ and } \frac{2\sqrt{3}}{2} \text{ and } \frac{4\sqrt{3}}{3}$ | M1dep | oe                                                    |
| <p>Processing at least as far as</p> $\frac{6}{2} + \frac{8\sqrt{3}}{2\sqrt{3}}$ <p>or <math>\frac{6}{2} + \frac{8\sqrt{3}\sqrt{3}}{6}</math></p> <p>or <math>\frac{6}{2} + \frac{24}{6}</math></p>                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                     | M1dep | oe                                                    |
|                                                                                                                                                                                                                                                                                                                                                           | 7 from correct working                                                                                                                                                                                                                                                                                                                              | A1    | $SC2 4 + 4\sqrt{3}$ oe                                |

The mark scheme for this question continues on the next page

|                                                                                                                                           |                                                                                  |       |                        |
|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------|------------------------|
| 25<br>cont                                                                                                                                | <b>Alternative method 2: uses a trig identity</b>                                |       |                        |
|                                                                                                                                           | $6 \sin 30^\circ + 2 \cos 30^\circ \times 4 \frac{\sin 30^\circ}{\cos 30^\circ}$ | M1    | oe                     |
|                                                                                                                                           | 6 sin 30° + 8 sin 30°<br>or<br>14 sin 30°                                        | M1dep | oe                     |
|                                                                                                                                           | $14 \times \frac{1}{2}$                                                          | M1dep | oe                     |
|                                                                                                                                           | 7 from correct working                                                           | A1    | SC2 $4 + 4\sqrt{3}$ oe |
|                                                                                                                                           | <b>Additional Guidance</b>                                                       |       |                        |
| Alt 2 is not on this specification, but may be seen if other qualifications have been studied, eg AQA Certificate – Level 2 Further Maths |                                                                                  |       |                        |
| Incorrect order of operations gives $4 + 4\sqrt{3}$ oe                                                                                    |                                                                                  |       | SC2                    |
| Allow $\sqrt{1}$ for 1 throughout                                                                                                         |                                                                                  |       |                        |