

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
1	4.643(069317)	M1 A1	for 192.6 or 8.934 or 21.558(09268) or answer of 4.64 or digits 4643... for 4.643(069317)	Answer must be given to at least 3 decimal places rounded or truncated Check first 3 decimal places only If given to 3 dp or better ignore subsequent rounding
2 (a)	positive	C1	cao	Ignore any description of a relationship and any reference to strength of correlation
(b)	lobf drawn	C1	for straight line passing between (140, 20) and (140, 22.5) and between (220, 30) and (220, 32.5)	
(c)	26.5 – 29.5	C1	for answer in range 26.5 – 29.5 or ft single line with positive gradient	

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
3	Zurich (supported)	P1 P1 C1	<p>for one process to compare, eg eg Currency conversion, $3.5 \times 1.25 (= 4.375)$ or $7.20 \div 1.25 (= 5.76)$ or finds 1g in one place $\pounds 3.50 \div 200 (= 0.0175)$ or $7.20 \div 360 (= 0.02)$ or finds 200g in Zurich, $7.2 \div 360 \times 200 (= 4.0)$ or finds 360g in London, $3.5 \div 200 \times 360 (= 6.30)$ or finds grams per unit cost, $200 \div 3.50 (= 57.1\dots)$ or $360 \div 7.20 (= 50)$</p> <p>for a complete process to find comparable figures in the same currency, eg comparing 200g in £ or francs $3.5 \times 1.25 (= 4.375)$ and $7.2 \div 360 \times 200 (= 4.0)$ or “4.0” $\div 1.25 (= 3.20)$</p> <p>OR comparing 360g in £ or francs “6.30” $\times 1.25 (= 7.875)$ or $3.5 \div 200 \times 360 (= 6.30)$ and $7.20 \div 1.25 (= 5.76)$</p> <p>OR comparing 1g in £ or francs “0.0175” $\times 1.25 (= 0.0218\dots)$ and $7.20 \div 360 (= 0.02)$ or $\pounds 3.50 \div 200 (= 0.0175)$ and “0.02” $\div 1.25 (= 0.016)$</p> <p>OR comparing quantity per unit cost in £ or francs $200 \div 3.50 (= 57.1\dots)$ and $360 \div 7.20 (= 50)$ or $200 \div 4.375 (= 45.7\dots)$ and $360 \div 7.20 (= 50)$</p> <p>for Zurich supported by correct comparable values, eg 4.3(75 F) and 4(0 F) or (£)3.2(0) or 7.8(75 F) or (£)6.3(0) and (£)5.76 or 0.021(8... F) and 0.02 (F) or (£)0.017(5) and (£)0.016 or 57(1... g/£) and 62(5 g/£) or 45(7... g/F) and 50 (g/F)</p>	<p>Accept figures rounded or truncated to 2sf throughout</p> <p>Accept working in pence Ignore incorrect units for P marks Award if this mark implies the previous</p> <p>Clear indication that bar is better value for money in Zurich supported by correct values for comparison Units not needed but if given must be correct Table with examples at end of mark scheme</p>

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
4	statements	C1	<p>for identifying that the number 17 should only be in the intersection</p> <p>Acceptable examples</p> <p>17 should only be in the middle Take 17 out of (set) A only appropriate 17 crossed out on the Venn diagram</p> <p>Not acceptable examples</p> <p>Tom should put 17 in B Should have two 17's in the middle Take 17 out of (set) A Needs to remove a 17 17 is on twice</p> <p>C1 for identifying that the number 1 is missing from the diagram</p> <p>Acceptable examples</p> <p>1 should be in the outside region He should put 1 outside the circles Tom needs to put the number 1 on the diagram include 1 (outside $A \cup B$) 1 added to the diagram in the correct region</p> <p>Not acceptable examples</p> <p>Add the remaining numbers There are missing odd numbers between 0 and 20 put all the odd numbers outside the circles add the odd numbers in the \mathcal{E} box include the even numbers 1 should be outside the Venn diagram</p>	<p>Accept correct descriptions using correct set notation for both marks</p> <p>Diagram may be used to support statements</p>

Paper: 1MA1/2H					
Question	Answer	Mark	Mark scheme	Additional guidance	
5 (a)	5, (0), -3, -4, (-3), 0, 5	B2 (B1)	for all 5 correct values for at least 2 correct values)	Accept freehand curves drawn that are not line segments Ignore anything drawn outside the required range	
(b)	Graph drawn	B2 (B1)	for a fully correct graph ft (dep on B1 in (a)) for plotting at least 5 of the points from their table correctly)		

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
6	Yes (supported)	P1	<p>for start to a process to find a percentage increase, eg $87 - 76 (= 9)$ or $66 - 65 (= 1)$</p> <p>or $\frac{85}{76} (= 1.118\dots)$ or $\frac{66}{65} (= 1.015\dots)$</p> <p>P1 for process to find a % increase, eg $\frac{9}{76} \times 100 (= 11.84\dots)$ or $\frac{1}{65} \times 100 (= 1.53\dots)$</p> <p>or $\frac{85}{76} \times 100 - 100 (= 11.84\dots)$ oe or $\frac{66}{65} \times 100 - 100 (= 1.53\dots)$ oe</p> <p>P1 for processes to find both % increases, eg $\frac{9}{76} \times 100 (= 11.84\dots)$ and $\frac{1}{65} \times 100 (= 1.53\dots)$</p> <p>or $\frac{85}{76} \times 100 - 100 (= 11.84\dots)$ oe and $\frac{66}{65} \times 100 - 100 (= 1.53\dots)$ oe</p> <p>C1 for Yes supported by correct figures, eg $11(842\dots) \div 1.5(38\dots) = 7.3$ to 8 or $11(842\dots)$ and $1.5(38\dots) \times 7 = 10(766\dots)$ or $11(842\dots) \div 7 = 1.57$ to 1.7 and $1.5(3\dots)$ or $0.11(842\dots)$ and $0.10(766\dots)$</p>	Accept use of rounded and truncated figures for all marks May work in decimals or equivalent proportions throughout

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
7	240	P1	<p>for forming an appropriate equation, eg $2x + 11 = 4x - 4$ or $2x + 11 + 4x - 4 + 2x + 5 = 72$ or $8x + 12 = 72$</p>	
		P1	<p>(dep P1) for process to isolate terms in x for their equation, eg $4x - 2x = 11 + 4$ or $2x + 4x + 2x = 72 - 11 - 4 - 5$ or $x = 7.5$ oe</p>	$8x = 60$ or $2x = 15$ implies P2 A correct length stated or shown on diagram implies P2 Eg $AB = 20$, $AC = 26$, $CB = 26$ $[AC]$ $[BC]$ $[AB]$ $[ACB]$ $[CAB]$ and $[BAC]$ must be clearly identified if incorrect. May be on diagram. $AB = 2 \times 7.5 + 5 (= 20)$ $AC = 2 \times 7.5 + 11 (= 26)$ $CB = 4 \times 7.5 - 4 (= 26)$ Alternative scheme not expected on Foundation tier but may be seen.
		P1	<p>for correct application of Pythagoras, eg $(26)^2 - \left(\frac{20}{2}\right)^2$ or $[AC]^2 - \left(\frac{[AB]}{2}\right)^2$ or height = 24 or a complete method to find the height</p>	<p>for a correct trig statement to find CAB or CBA or ACB, eg</p> $\cos CAB = \cos CBA = \frac{20 \div 2}{26} \text{ or}$ $\cos CAB = \cos CBA = \frac{20^2 + 26^2 - 26^2}{2 \times 20 \times 26}$ $\text{or } \cos ACB = \frac{26^2 + 26^2 - 20^2}{2 \times 26 \times 26}$ $\text{or } CAB = 67.3\dots \text{ or } CBA = 67.3\dots \text{ or } ACB = 45.2\dots$
		P1	<p>for process to find area of triangle, eg $20 \times 24 \div 2$ or $[AB] \times [\text{height}] \div 2$</p>	<p>for process to find area of triangle, eg</p> $\frac{1}{2} \times 26 \times 20 \times \sin 67.3\dots$ $\text{or } \frac{1}{2} \times 26 \times 26 \times \sin 45.2\dots$ $\text{or } \frac{1}{2} \times [AB] \times [AC] \times \sin [BAC]$ $\text{or } \frac{1}{2} \times [BC] \times [AC] \times \sin [ACB]$
		A1	cao	ft incorrect figures providing at least one previous P1 awarded. $[\text{height}]$ is what they clearly think is the height of the triangle but not 26 or 20 or 10

Paper: 1MA1/2H					
Question	Answer	Mark	Mark scheme	Additional guidance	
8	3.125×10^7	M1 A1	for $(k =) (1.25 \times 10^{-12}) \div (4 \times 10^{-20})$ or for the digits 3125 cao	Can condone missing brackets on division 3.1×10^7 or 3.12×10^7 or 3.13×10^7 will score M1A0	
9	shown	M1 M1 A1	for method to find the interior angle eg $(9 - 2) \times 180 \div 9 (= 140)$ or exterior angle eg $360 \div 9 (= 40)$ of a regular nonagon for a complete method to find the interior angle ABC , eg $360 - "140" - "140" (= 80)$ or $"40" \times 2 (= 80)$ or finds the angle sum assuming a square, eg $90 + "140" + "140" (= 370)$ for complete solution with correct conclusion, eg interior angle of a square is 90, not 80 or angles around a point sum to 360 not 370	Angles may be shown on the diagram Any angle labelled correctly as 140 or 40 and not contradicted scores this mark	
10	$x = -2.5, y = -6$	M1 A1 M1 A1	for a correct method to eliminate one variable (condone one arithmetic error) for either $x = -2.5$ or $y = -6$ oe (dep M1) for substituting found value into one of the equations or correct method after starting again (condone one arithmetic error) for either $x = -2.5$ and $y = -6$ oe SCB2 for both correct answers if no more than 1 mark awarded SCB1 for one correct answer if no marks awarded	Fractions do not need to be in simplest form Fractions do not need to be in simplest form	

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
11	enlargement scale factor $\frac{2}{3}$ centre $(-4, -2)$	C2 (C1)	for enlargement, scale factor $\frac{2}{3}$ oe , centre $(-4, -2)$ for 2 of the 3 aspects)	Award no marks if more than one transformation is given
12	5.9	P1 P1 P1 P1 A1	for a process to find the volume of the cylinder, eg $\pi \times 3^2 \times 8 (= 226.19\dots)$ for process to find mass of cylinder, eg “226.19” $\times 7.86 (= 1777.89\dots)$ or [volume ₁] $\times 7.86$ for process to find volume of cube, eg “1777.89” $\div 8.5 (= 209.16\dots)$ or [mass] $\div 8.5$ for process to find side length, eg $\sqrt[3]{209.16\dots}$ or $\sqrt[3]{\text{volume}_2}$ for answer in range 5.9 to 5.94	Can be implied by 72π [volume ₁] must be unambiguously the volume of the cylinder but cannot be 3 or 8 [mass] must be unambiguously the mass of the cylinder [volume ₂] must be unambiguously the volume of the cube

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
13 (a)	No with reason	C1	<p>for No with reason,</p> <p>Acceptable examples</p> <p>No, $4 \div 4 \neq 8 \div 6$</p> <p>No, $4 \div 4 \neq 8 \div 6$ so they don't have the same constant</p> <p>No because $y = kx$ doesn't work</p> <p>No, it won't pass through $(0, 0)$</p> <p>Not acceptable examples</p> <p>Yes,</p> <p>No, they don't increase by the same number</p> <p>No, they don't have the same constant</p>	
(b)(i)	49	M1	for stating a correct relationship, eg $w = k \times \sqrt{t}$ or $140 = k \times \sqrt{64}$ oe	Condone the use of ' α ' instead of '=' for both M marks
		M1	for method to find constant of proportionality, eg $140 \div \sqrt{64}$ (= 17.5 oe)	Award of this mark implies the previous mark
(ii)	sketch	C1	for sketch	Sketch at end of mark scheme
14	180	M1	<p>for $10 \times 9 \times 4$ (= 360) or $10 \times 9 \times 4 \div 2$ or $10 \times 9 \div 2$ (= 45) or</p> <p>$(9 \times 4) + (8 \times 4) + (7 \times 4) + (6 \times 4) + (5 \times 4) + (4 \times 4) + (3 \times 4) +$</p> <p>$(2 \times 4) + (1 \times 4)$ oe</p>	
		A1	cao	

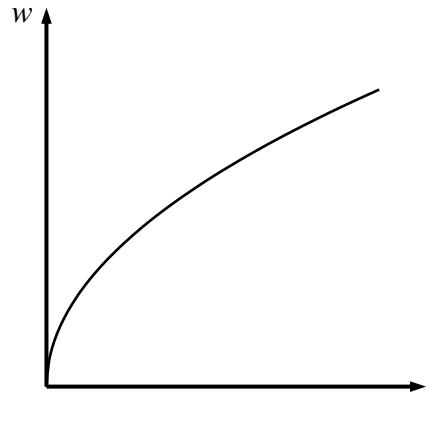
Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
15	5 n^2 + 2 n - 4	M1	for a correct start to a method to find the n th term, eg constant 2nd differences and n^2 OR states $2a = 10$ or $3a + b = 17$	Need to see constant 2nd difference found and n^2 Condone use of a different variable throughout $a = 5$ or $b = 2$ implies M1
		M1	for working with $5n^2$, eg $5n^2$, and sequence -2, 0, 2, ... OR states $2a = 10$ and $3a + b = 17$	5 n^2 + 2 n implies M2 $5n^2$ is implied by 5, 20, 45, ... $a = 5$ and $b = 2$ implies M2
		A1	for $5n^2 + 2n - 4$ oe	Condone + - 4
	1.2	M1	for substituting values, eg $4 = k \times 9 + k$ or $4 = k(9+1)$ or $(k = 0.4)$	
		M1	for $(u_3 =)$ "0.4" \times 4 + "0.4" (= 2)	
		A1	for 1.2 oe	
16	Histogram completed	M1	for method to use area to find at least one other frequency (not 11), eg $10 \times 1.5 (= 15)$ or $20 \times 0.3 (= 6)$	
		M1	for method to find unknown frequencies, eg $(60 - 11 - "15" - "6") \div 2 (= 14)$	Condone one error in reading FD
		M1	ft for method to find an unknown frequency density, eg "14" $\div 5 (= 2.8)$ or "14" $\div 10 (= 1.4)$ or one correct bar drawn	Ft one error from reading FD
		C1	cao	

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
17	shown	M1 M1 C1	<p>for use of a common denominator for 2 correct fractions, eg 2 of $\frac{6x-y}{10xy}$ or $\frac{5y}{10xy}$ or $\frac{2(2y-7x)}{10xy}$ oe</p> <p>for a correct method to write as single fraction, eg $\frac{6x-y}{10xy} + \frac{5y}{10xy} - \frac{4y-14x}{10xy}$ or $\frac{6x-y}{10xy} + \frac{5y}{10xy} - \frac{(4y-14x)}{10xy}$ or $\frac{6x-y+5y-4y+14x}{10xy}$ or $\frac{20x}{10xy}$ oe</p> <p>for correct working leading to $\frac{2}{y}$</p>	If seen in steps all arithmetic must be correct

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
18	Proof	M1	<p>begins proof to show that triangles ABO and CBO or triangles ABD and CBD are congruent by giving one pair of equal sides or equal angles with reason</p> <p>M1 for different pair of equal sides or angles with reason</p> <p>C1 for full proof that triangles ABO and CBO are congruent, SSS, or triangles ABD and CBD are congruent, RHS, and therefore angle ABO = angle CBO</p> <p>$AB = CB$ (given) BO (or BD) is <u>common</u> $AO = CO$ <u>radii</u> of circle angle BAD = angle BCD <u>angles in a semicircle</u> are 90 $(BO = AO = CO$ <u>radii</u> of circle) counts as two sides with reasons</p> <p>OR</p> <p>M1 draws OA, OC and AC and labels angle $OAC = x$ and angle $OCA = x$ with reason given, $AO = CO$ <u>radii</u> of circle and base angles of an <u>isosceles triangle</u> are equal or $BAC = BCA$ since ABC is isosceles</p> <p>M1 shows $OAC = OCA$ and shows $BAC = BCA$ and uses these to show $OAB = OCB$ with all reasons given</p> <p>C1 for full proof concluding with angle $ABO = y$ and angle $CBO = y$ with reason given, eg $OA = OB = OC$ <u>radii</u> of circle and OBC and OAC are isosceles</p>	Where D is point such that BOD is diameter

Paper: 1MA1/2H																																																				
Question	Answer	Mark	Mark scheme	Additional guidance																																																
19	60 and reason	B1	for 432.5 or 437.5 or 9.75 or 9.85 or 2.45 or 2.55																																																	
		M1	<p>for a correct process to find a bound for T eg $[\text{LB of } w] \div [\text{UB of } a - \text{LB of } c]$ where $432.5 \text{ , , } [\text{LB of } w] < 435$ and $9.8 < [\text{UB of } a] \text{ , , } 9.85$ and $2.45 \text{ , , } [\text{LB of } c] < 2.5$</p> <p>or $[\text{UB of } w] \div [\text{LB of } a - \text{UB of } c]$ where $435 < [\text{UB of } w] \text{ , , } 437.5$ and $9.75 \text{ , , } [\text{LB of } a] < 9.8$ and $2.5 < [\text{UB of } c] \text{ , , } 2.55$</p>	<table border="1"> <thead> <tr> <th>Lette r</th> <th>Given</th> <th>LB</th> <th>UB</th> </tr> </thead> <tbody> <tr> <td>w</td> <td>435</td> <td>432.5</td> <td>437.5</td> </tr> <tr> <td>a</td> <td>9.8</td> <td>9.75</td> <td>9.85</td> </tr> <tr> <td>c</td> <td>2.5</td> <td>2.45</td> <td>2.55</td> </tr> </tbody> </table> <p>UB</p> <table border="1"> <thead> <tr> <th>Lette r</th> <th>Given</th> <th>LB</th> <th>UB</th> </tr> </thead> <tbody> <tr> <td>w</td> <td>435</td> <td>432.5</td> <td>437.5</td> </tr> <tr> <td>a</td> <td>9.8</td> <td>9.75</td> <td>9.85</td> </tr> <tr> <td>c</td> <td>2.5</td> <td>2.45</td> <td>2.55</td> </tr> </tbody> </table> <p>LB</p> <table border="1"> <thead> <tr> <th>Lette r</th> <th>Given</th> <th>LB</th> <th>UB</th> </tr> </thead> <tbody> <tr> <td>w</td> <td>435</td> <td>432.5</td> <td>437.5</td> </tr> <tr> <td>a</td> <td>9.8</td> <td>9.75</td> <td>9.85</td> </tr> <tr> <td>c</td> <td>2.5</td> <td>2.45</td> <td>2.55</td> </tr> </tbody> </table>	Lette r	Given	LB	UB	w	435	432.5	437.5	a	9.8	9.75	9.85	c	2.5	2.45	2.55	Lette r	Given	LB	UB	w	435	432.5	437.5	a	9.8	9.75	9.85	c	2.5	2.45	2.55	Lette r	Given	LB	UB	w	435	432.5	437.5	a	9.8	9.75	9.85	c	2.5	2.45	2.55
Lette r	Given	LB	UB																																																	
w	435	432.5	437.5																																																	
a	9.8	9.75	9.85																																																	
c	2.5	2.45	2.55																																																	
Lette r	Given	LB	UB																																																	
w	435	432.5	437.5																																																	
a	9.8	9.75	9.85																																																	
c	2.5	2.45	2.55																																																	
Lette r	Given	LB	UB																																																	
w	435	432.5	437.5																																																	
a	9.8	9.75	9.85																																																	
c	2.5	2.45	2.55																																																	
		M1	<p>for a correct process to find both LB and UB bound for T eg $[\text{LB of } w] \div [\text{UB of } a - \text{LB of } c]$ where $432.5 \text{ , , } [\text{LB of } w] < 435$ and $9.8 < [\text{UB of } a] \text{ , , } 9.85$ and $2.45 \text{ , , } [\text{LB of } c] < 2.5$</p> <p>and $[\text{UB of } w] \div [\text{LB of } a - \text{UB of } c]$ where $435 < [\text{UB of } w] \text{ , , } 437.5$ and $9.75 \text{ , , } [\text{LB of } a] < 9.8$ and $2.5 < [\text{UB of } c] \text{ , , } 2.55$</p>																																																	
		A1	(dep on all previous marks) for 58.44(5...) and 60.76(3...) with both values clearly coming from working with correct values	Accept bounds rounded or truncated to at least 4 sf																																																
		C1	for 60 from 58.44... and 60.76... and statement that both LB and UB round to 60																																																	

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
20	10.8	P1 P1 A1	<p>for process to find FC,</p> <p>eg $\tan 52 = \frac{8}{FC}$ ($FC = 6.25(028..)$)</p> <p>for process that will lead to side length of ABC,</p> <p>eg $\sin 60 = \frac{"6.25"\times 1.5}{BC}$ or $\cos 30 = \frac{"6.25"\times 1.5}{BC}$</p> <p>or $("6.25"\times 1.5)^2 + (0.5x)^2 = x^2$ oe</p> <p>for answer in range 10.8 to 10.83</p>	


Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
21	-6, 3.5	P1	<p>for process to find gradient of PR or QR,</p> <p>eg $\frac{k+3-5}{k-4} \left(= \frac{k-2}{k+4} \right)$ or $\frac{k+3-6}{k-6} \left(= \frac{k+9}{k-6} \right)$ or</p> $\frac{5-(k+3)}{-4-k} \left(= \frac{2-k}{-4-k} \right)$ or $\frac{-6-(k+3)}{6-k} \left(= \frac{-9-k}{6-k} \right)$ <p>OR</p> <p>for start of process to use Pythagoras,</p> <p>eg $PR^2 = (k-4)^2 + (k+3-5)^2$ or $RP^2 = (-4-k)^2 + (-5-(k+3))^2$</p> <p>or $QR^2 = (k-6)^2 + (k+3-6)^2$ or $RQ^2 = (6-k)^2 + (-6-(k+3))^2$</p>	<p>Condone missing bracket for first P1 only</p> <p>Stating eg Grad $PR = \frac{k-4}{k+3-5}$</p> <p>Or grad $QR = \frac{k-6}{k+3-6}$ scores P0 but check SC</p>
		P1	<p>for forming a correct equation,</p> <p>eg $\frac{k+3-5}{k-4} \times \frac{k+3-6}{k-6} = -1$ or $\frac{k-2}{k+4} \times \frac{k+9}{k-6} = -1$ or</p> $\frac{5-(k+3)}{-4-k} \times \frac{-6-(k+3)}{6-k} = -1$ or $\frac{2-k}{-4-k} \times \frac{-9-k}{6-k} = -1$ oe <p>OR</p> <p>$(k-4)^2 + (k+3-5)^2 + (k-6)^2 + (k+3-6)^2 = (-6-5)^2 + (6-4)^2$</p> <p>or $(k+4)^2 + (k-2)^2 + (k-6)^2 + (k+9)^2 = (-11)^2 + 10^2$</p>	
		P1	<p>for writing in the form $ak^2 + bk + c (= 0)$,</p> <p>eg $2k^2 + 5k - 42 (= 0)$ or $4k^2 + 10k - 84 (= 0)$</p>	
		P1	<p>(dep P3) for factorising, eg $(k+6)(2k-7) (= 0)$ or $(2k+12)(2k-7)$ or $(k+6)(4k-14)$</p> <p>OR use of formula, eg $\frac{-5 \pm \sqrt{5^2 - 4 \times 2 \times -42}}{2 \times 2}$ or $\frac{-10 \pm \sqrt{10^2 - 4 \times 4 \times -84}}{2 \times 4}$</p>	
		A1	<p>cao</p> <p>SCB4 for correct answer coming from consistent use of reciprocals of gradients</p>	

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
22	26	P1	<p>for a correct 2nd probability, eg $\frac{2x-1}{5x-1}$ or $\frac{3x-1}{5x-1}$ or $\frac{2x}{5x-1}$ or $\frac{3x}{5x-1}$ or $\frac{3}{5}$ or $\frac{2}{5}$</p> $\frac{3}{5} \times \frac{n-1}{n-1} \text{ or } \frac{2}{5} \times \frac{n-1}{n-1}$	
		P1	<p>for a correct product, eg $\frac{3x}{5x} \times \frac{3x-1}{5x-1}$ or $\frac{2x}{5x} \times \frac{2x-1}{5x-1}$ or $\frac{3}{5} \times \frac{2x}{5x-1}$ or $\frac{2}{5} \times \frac{3x}{5x-1}$ or $\frac{3}{5} \times \frac{5}{n-1}$ or $\frac{2}{5} \times \frac{5}{n-1}$ oe</p>	Award of this mark implies P2
		P1	<p>for process to form equation, eg $\frac{3x}{5x} \times \frac{3x-1}{5x-1} + \frac{2x}{5x} \times \frac{2x-1}{5x-1} = \frac{41}{80}$ or $2 \times \frac{3}{5} \times \frac{2x}{5x-1} = \frac{39}{80}$ or $\frac{3}{5} \times \frac{n-1}{n-1} + \frac{2}{5} \times \frac{n-1}{n-1}$ oe</p>	Award of this mark implies P3
		P1	<p>for process to eliminate fractions and reduce equation to linear or quadratic form, eg $1040x - 400 = 1025x - 205$ or $960x = 975x - 195$ or $1040x^2 - 400x = 1025x^2 - 205x$ or $960x^2 = 975x^2 - 195x$ or $\frac{208}{5}n - 80 = 41n - 41$ or $x = 13$ or $n = 65$</p>	
		A1	cao	

Question 3

	London	Zurich
100g	$3.5 \div 2 = \mathbf{\$1.75}$ $1.75 \times 1.25 = \mathbf{2.1875 F}$	$7.2 \div 360 = \mathbf{2.00 F}$ $2.00 \div 1.25 = \mathbf{\$1.60}$
200g	£3.50 $3.5 \times 1.25 = \mathbf{4.375 F}$	$7.2 \div 360 \times 200 = \mathbf{4.0 F}$ $4.0 \div 1.25 = \mathbf{\$3.20}$
360g	$3.5 \div 200 \times 360 = \mathbf{\$6.30}$ $6.30 \times 1.25 = \mathbf{7.875 F}$	7.20 F $7.20 \div 1.25 = \mathbf{\$5.76}$
1g	$\mathbf{\$3.50} \div 200 = \mathbf{\$0.0175}$ $\times 1.25 = \mathbf{0.021875 F}$	$7.20 \div 360 = \mathbf{0.02 F}$ $\div 1.25 = \mathbf{\$0.016}$
40g	$\mathbf{\$3.50} \div 5 = \mathbf{\$0.70}$ $0.7 \times 1.25 = \mathbf{0.875 F}$	$7.20 \div 9 = \mathbf{0.8 F}$ $0.8 \div 1.25 = \mathbf{\$0.64}$
By weight	$350 \div 200 = \mathbf{1.75 p/g}$ $350 \times 1.25 = 4.375$ $4.375 \div 200 = \mathbf{0.021875 F/g}$	$720 \div 360 = \mathbf{0.02 F/g}$ $720 \div 1.25 = 576$ $576 \div 360 = \mathbf{1.6 p/g}$

Question 13(b) (ii)

