

International GCSE Maths

Apart from questions 4d, 17a, 17b, 18, 19, 23 (where the mark scheme states otherwise) the correct answer, unless clearly obtained from an incorrect method, should be taken to imply a correct method.

Question	Working	Answer	Mark	Notes
1	eg $\frac{x+10+y}{3} = 11$ oe or $y - x = 7$ oe $3 \times 11 (=33)$		2	M1 for one correct equation in x and y OR finding the total of x , 10 and y OR two numbers with a sum of 23 OR two numbers with a range of 7 Note: condone non-integers for the award of M1
		$x = 8, y = 15$		A1
				Total 2 marks

2	(area =) $2 \times 1.25 (=2.5)$		3	M1
	$(F =) 42 \times "2.5"$ or $42 = \frac{F}{"2.5"}$			M1 Correct substitution into pressure formula
		105		A1 cao
				Total 3 marks

Question	Working	Answer	Mark	Notes
3	$eg (6.3 \times 1000) \div 210 (= 30)$	343.2(0)	4	M1 for a method to find the number of candles, could work in grams or kg
	$\frac{2}{5} \times "30" \times 13 (= 156)$			M1 for a method to find money made from the \$13 candles
	$\left(1 - \frac{2}{5}\right) \times "30" \times 0.8 \times 13 (= 187.20)$			M1 for a method to find money made from the reduced candles
				A1
				Total 4 marks

4 (a)	$3c - 21 + 6c + 8$	$9c - 13$	2	M1 For 3 or 4 terms correct A1
(b)	$x^2 - 2x + 7x - 14$	$x^2 + 5x - 14$	2	M1 For 3 correct terms or for 4 correct terms ignoring signs or for $x^2 + 5x + k$ for any non-zero value of k or for + $5x - 14$ A1
(c)		$7y(4y - 3)$	2	B2 B1 for $y(28y - 21)$ or $7(4y^2 - 3y)$ or $7y(4y + k)$ or $7y(ay - 3)$
(d)	$eg 7x - 2 = 4(3x + 1) \text{ oe}$	$-\frac{6}{5}$	3	M1 correct first step
	$7x - 12x = 4 + 2 \text{ oe or } -2 - 4 = 12x - 7x \text{ oe}$			M1 for rearranging the x terms on one side and the numerical terms on the other. ft rearranging their expansion $ax + b = cx + d$ eg $7x - 2 = 12x + 4$
				A1 oe, dep on M1
				Total 9 marks

Question	Working	Answer	Mark	Notes
5	6h 42 min = 6.7 h or $6\frac{42}{60}$ oe or 402 (mins) or 24120 (secs) OR 10.8(33...)(km)	4355	3	B1 for converting 6h 42min into hours or minutes or seconds OR finding distance travelled in 1 minute
	eg 6.7×650 or $(402 \times 650) \div 60$ or $(24120 \times 650) \div 3600$ or $6 \times 650 + 42 \times 10.8$			M1 use of $s \times t$, allow $6.42 \times 650 (=4173)$
				A1
				Total 3 marks

6	Eg $\frac{1.5}{100} \times 20000$ oe or 300 $\frac{1.5}{100} \times (20000 + '300') = 304.5$ $\frac{1.5}{100} \times (20000 + '300' + '304.5') = 20913.5675$	OR 20000×1.015^3	3 20 914	M1 for eg $\frac{1.5}{100} \times 20000$ oe or 300 M1 for completing method Accept 1 + 0.015 as equivalent to 1.015 throughout SC: If no other marks gained, award M1 for 20000×1.045 oe or 20900 or 900 A1 Answers in range 20 913– 20 914	OR M2 for 20000×1.015^3 or 20 000 $\times 1.015^4$ or 21 227.27.. (M1 for 20000×1.015^2 or 20 604.5)
					Total 3 marks

Question	Working	Answer	Mark	Notes
7 (a)		$5y^4$	2	B2 B1 for fully simplifying terms in x or terms in y
(b)	$h - f = 3e$ or $\frac{h}{3} = e + \frac{f}{3}$ or $\frac{h-f}{3}$	$e = \frac{h-f}{3}$	2	M1
				A1 oe, accept $e = \frac{f-h}{-3}$
				Total 4 marks

8	$160^2 + 200^2 (=65600)$		3	M1
	$\sqrt{160^2 + 200^2}$			M1
		256		A1 accept 256 – 256.2
				Total 3 marks

9	Interior angle of pentagon $(180 \times 3) \div 5 (= 108)$ oe		4	M1 or exterior angle of pentagon = $\frac{360}{5} (= 72)$
	Interior angle of octagon $(180 \times 6) \div 8 (= 135)$ oe			M1 or exterior angle of octagon = $\frac{360}{8} (= 45)$
	$(CBF =) 360 - ("108" + "135") (= 117)$			M1 $(CBF =) "72" + "45" (= 117)$
		31.5		A1
				Total 4 marks

Question	Working	Answer	Mark	Notes
10	$24.3 - 16 (= 8.3)$ $\tan y = \frac{12.5}{8.3}$ or $\tan z = \frac{8.3}{12.5}$ OR $\sqrt{8.3^2 + 12.5^2} (= 15.004\dots)$ and $\sin y = \frac{12.5}{15.0}$ or $\sin z = \frac{8.3}{15.0}$ or $\cos y = \frac{8.3}{15.0}$ or $\cos z = \frac{12.5}{15.0}$ $\tan^{-1}\left(\frac{12.5}{8.3}\right) (= 56.415\dots)$ or $\tan^{-1}\left(\frac{8.3}{12.5}\right) (= 33.584\dots)$ or $\sin^{-1}\left(\frac{12.5}{15.0}\right) (= 56.415\dots)$ or $\sin^{-1}\left(\frac{8.3}{15.0}\right) (= 33.584\dots)$ or $\cos^{-1}\left(\frac{8.3}{15.0}\right) (= 56.415\dots)$ or $\cos^{-1}\left(\frac{12.5}{15.0}\right) (= 33.584\dots)$	123.6	4	M1 Forming a right angled triangle with 24.3 - 16 on one side, 8.3 may be seen on diagram M1 for a correct trig statement involving angle CDE or DCE where E is on the line AD and CE is perpendicular to AD M1 complete method to find angle CDE or DCE A1 $123.5 - 123.6$
				Total 4 marks

Question	Working	Answer	Mark	Notes
11 (a)		$100 < m \leq 200$	1	B1
(b)		10, 46, 80, 100, 115, 120	1	B1
(c)		Correct cumulative frequency graph	2	<p>B2 fully correct cf graph – points at ends of intervals and joined with curve or line segments</p> <p>If not B2 then B1(ft from a table with only one arithmetic error)</p> <p>for 5 or 6 (ft from a table with only one arithmetic error) of their points at ends of intervals and joined with curve or line segments</p> <p>OR for 5 or 6 points plotted correctly at ends of intervals not joined</p> <p>OR for 5 or 6 of their points from table plotted consistently within each interval (not at upper ends of intervals) at their correct heights and joined with smooth curve or line segments</p>
(d)	eg reading of 155 and 350 stated or indicated on graph	175 – 205	2	<p>M1ft For use of 30 and 90, or 30.25 and 90.75, or ft from a cf graph provided method is shown.</p> <p>A1ft from their cf graph</p>
(e)		12 or 13	2	<p>M1 For reading off cf from money spent at £450 (108 ft) ft from cf graph</p> <p>A1</p>
				Total 8 marks

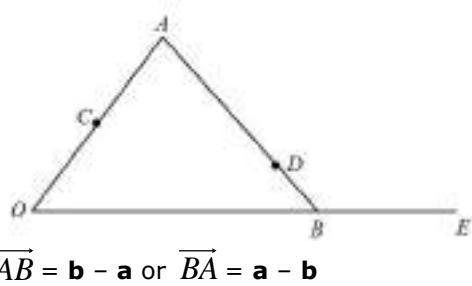
Question	Working	Answer	Mark	Notes
12	eg $(COA =) 360 - (2 \times 90 + 74) (=106)$ or $(COA =) 180 - 74 (=106)$ or $OAB = 90$ or $OCB = 90$	53	3	M1 Fully correct method to find COA or OAB or OCB
	"106" $\div 2$		M1	
			A1	values may be seen on diagram throughout
			Total 3 marks	

13	eg $m = \frac{1}{2}$ or $y = \frac{1}{2}x + c$		4	M1 for gradient $= \frac{1}{2}$
	eg $7 = \frac{1}{2} \times 4 + c$ or $y - 7 = \frac{1}{2}(x - 4)$			M1 for substituting (4,7) into an equation with gradient $= \frac{1}{2}$
	eg $\frac{1}{2}x + 5 = 0$ or $-7 = \frac{1}{2}(x - 4)$			M1 Inputting $y = 0$ into their correct equation
		(-10, 0)		A1 SC B2 for an answer of (18,0) or (0.5,0) oe or (7.5,0) oe
			Total 4 marks	

Question	Working	Answer	Mark	Notes
14	$2^7 = 4^{2x} \times 2^x$ or $128 = (2^2)^{2x} \times 2^x$	1.4	3	M1 Replacing 128 by 2^7 or 4 by 2^2
	$7 = 2(2x) + x$			M1
				A1 oe
				Total 3 marks

15	(i)	19	1	B1
	(ii)	5	1	B1
	(iii)	29	1	B1
				Total 3 marks

Question	Working	Answer	Mark	Notes
16			4	M1 for $\frac{a}{8} \times \frac{b}{7} \times \frac{c}{6}$ where $a < 8, b < 7, c < 6$
	$\text{eg } P(o, o, o) = \frac{5}{8} \times \frac{4}{7} \times \frac{3}{6} \left(= \frac{60}{336} = \frac{5}{28} = 0.178(571...) \right)$ $\text{or } P(e, e, o) = \frac{3}{8} \times \frac{2}{7} \times \frac{5}{6} \left(= \frac{30}{336} = \frac{5}{56} = 0.0892(857...) \right)$			M1 for a complete method to find $P(o, o, o)$ or $P(o, e, e)$ or $P(e, o, e)$ or $P(e, e, o)$
			$\frac{25}{56}$	M1 for a complete method to find $P(o, o, o)$ and at least one of $P(o, e, e)$, $P(e, o, e)$, $P(e, e, o)$
				A1 oe $\frac{150}{336}, 0.446(428571..)$ SC B2 for $\frac{260}{512} \left(= \frac{65}{128} = 0.507(8125) \right)$, B1 for $\frac{170}{512} \left(= \frac{85}{256} = 0.332(03125) \right)$
				Total 4 marks


Question	Working	Answer	Mark	Notes
17 (a)	eg $x = 0.\overline{436}$ and $100x = 43.\overline{63}$ or $10x = 4.\overline{36}$ and $1000x = 436.\overline{36}$	show	2	M1 eg two decimals that when subtracted give a finite decimal
	$99x = 43.2, x = \frac{43.2}{99}$ or $990x = 432, x = \frac{432}{990}$			A1 for completing the 'show that' arriving at given answer from correct working.
(b)			3	M1 for $\sqrt{20} = 2\sqrt{5}$ and $\sqrt{80} = 4\sqrt{5}$ or $\frac{\sqrt{20} + \sqrt{80}}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$ or $\frac{\sqrt{20} + 2\sqrt{20}}{\sqrt{3}}$
				M1dep for $\frac{6\sqrt{15}}{3}$ or $2\sqrt{15}$ or $\frac{3\sqrt{60}}{3}$ oe
		$\sqrt{60}$		A1 dep on M2, accept $a = 60$
				Total 5 marks

Question	Working		Answer	Mark	Notes
18	$2(2y - 3)^2 + 3y^2 = 14$ or	$2x^2 + 3\left(\frac{x+3}{2}\right)^2 = 14$		5	M1 correct first step eg substitution
	$11y^2 - 24y + 4 = 0$	$11x^2 + 18x - 29 = 0$		A1	for a correct simplified quadratic
	$(11y - 2)(y - 2) (=0)$ or $\frac{24 \pm \sqrt{(-24)^2 - 4 \times 11 \times 4}}{2 \times 11}$	$(11x + 29)(x - 1) (=0)$ or $\frac{-18 \pm \sqrt{18^2 - 4 \times 11 \times -29}}{2 \times 11}$		M1	(dep on M1) first step to solve their 3 term quadratic
	$y = \frac{2}{11}$ or $y = 2$ (need both)	$x = \frac{-29}{11}$ or $x = 1$ (need both)		A1	
		$x = \frac{-29}{11}, y = \frac{2}{11}$ $x = 1, y = 2$		A1	Dep on first M1 Must be paired correctly Must be 2 dp or better
					Total 5 marks

Question	Working	Answer	Mark	Notes
19	8.35, 8.45, 6.25, 6.35, 0.265, 0.275	8.3	3	M1 For sight of 8.35, 8.45, 6.25, 6.35, 0.265 or 0.275
	$(a =) \frac{8.45 - 6.25}{0.265}$			M1 $a = \frac{UB - LB_1}{LB_2}$ Where $8.4 < UB \leq 8.45$ and $6.25 \leq LB_1 < 6.3$ and $0.265 \leq LB_2 < 0.27$
			A1	8.3(018867...) dep on M2
				Total 3 marks
20	eg $(4x + 3)(x - 2)$ or $(x =) \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \times 4 \times (-6)}}{2 \times 4}$	$x < -\frac{3}{4}$ $x > 2$	4	M1 first step to finding the critical values A1 for two correct critical values
	$(x =) -\frac{3}{4}$ and 2			M1 (dep on two critical values having been found) A1 for a diagram showing the inequalities OR $x < a$ and $x > b$ where a is their lower critical value and b is their upper critical value OR $x > 2$ OR $x < \frac{-3}{4}$ OR $\frac{-3}{4} > x > 2$
			1	A1 for both correct inequalities
				Total 4 marks

Question	Working	Answer	Mark	Notes
21 (a)		(-2, -2), (1, 6), (4, -2) Plotted and joined	2	B2 Fully correct graph- professional judgment required. (B1 for (1, 6) plotted OR (-2, -2) and (4, -2) plotted)
(b)		(2, -1), (-1, 3) (-4, -1) Plotted and joined	2	B2 Fully correct graph – professional judgment required. (B1 for 2 of the 3 points plotted) SC B1 for a correct reflection in the x-axis
				Total 4 marks

22	$\frac{(2x+5)(2x-5)}{(5x+7)(x-1)} \times \frac{2(2x-5)-3(x-3)}{(x-3)(2x-5)}$ $\frac{(2x+5)(2x-5)}{(5x+7)(x-1)} \times \frac{x-1}{(x-3)(2x-5)}$ $\frac{2x+5}{(5x+7)(x-3)}$	$\frac{2x+5}{(5x+7)(x-3)}$	4	M1 For $4x^2 - 25 = (2x + 5)(2x - 5)$ or $5x^2 + 2x - 7 = (5x + 7)(x - 1)$ M1 $\frac{2}{x-3} - \frac{3}{2x-5} = \frac{2(2x-5)-3(x-3)}{(x-3)(2x-5)} \text{ oe}$ M1 $\frac{(2x+5)(2x-5)}{(5x+7)(x-1)} \times \frac{x-1}{(x-3)(2x-5)}$ oe may be partially simplified A1 Denominator may be expanded eg $\frac{2x+5}{5x^2-8x-21}$ isw for incorrect denominator expansion
				Total 4 marks

Question	Working	Answer	Mark	Notes
23	$\overrightarrow{AB} = \mathbf{b} - \mathbf{a} \text{ or } \overrightarrow{BA} = \mathbf{a} - \mathbf{b}$		5	M1 Correct diagram (only points needed, condone missing vector labels) OR for finding \overrightarrow{AB} or \overrightarrow{BA} - may be seen as part of later working
	$\overrightarrow{AD} = \frac{3}{4}(\mathbf{b} - \mathbf{a}) \text{ or } \overrightarrow{DA} = \frac{3}{4}(\mathbf{a} - \mathbf{b})$ $\text{or } \overrightarrow{DB} = \frac{1}{4}(\mathbf{b} - \mathbf{a}) \text{ or } \overrightarrow{BD} = \frac{1}{4}(\mathbf{a} - \mathbf{b})$			M1 method to find \overrightarrow{AD} or \overrightarrow{DA} or \overrightarrow{DB} or \overrightarrow{BD} - may be seen as part of later working
	$\overrightarrow{CD} = \frac{1}{2}\mathbf{a} + \frac{3}{4}(\mathbf{b} - \mathbf{a}) \quad (= \frac{3}{4}\mathbf{b} - \frac{1}{4}\mathbf{a})$ $\text{or } \overrightarrow{DE} = \frac{1}{4}(\mathbf{b} - \mathbf{a}) + \frac{1}{2}\mathbf{b} \quad (= \frac{3}{4}\mathbf{b} - \frac{1}{4}\mathbf{a})$ $\text{or } \overrightarrow{CE} = -\frac{1}{2}\mathbf{a} + \mathbf{b} + \frac{1}{2}\mathbf{b} \quad (= \frac{3}{2}\mathbf{b} - \frac{1}{2}\mathbf{a})$			M1 oe, method to find \overrightarrow{CD} or \overrightarrow{DE} or \overrightarrow{CE}
		Correct simplified vectors for two of $\overrightarrow{CD}, \overrightarrow{DE}, \overrightarrow{CE}$ with a correct explanation		M1 A correct vector expression in terms of \mathbf{a} and \mathbf{b} for two of $\overrightarrow{CD}, \overrightarrow{DE}, \overrightarrow{CE}$
				A1 A correct conclusion eg $\overrightarrow{CD} = \overrightarrow{DE}$ so CDE is a straight line $\overrightarrow{CE} = 2\overrightarrow{CD}$ so CDE is a straight line $\overrightarrow{CE} = 2\overrightarrow{DE}$ so CDE is a straight line
				Total 5 marks

Question	Working	Answer	Mark	Notes
24 (a)		$11 - (x + 2)^2$	2	M1 For $11 - (x + q)^2$ or $p - (x + 2)^2$ A1 fully correct, accept $p = 11, q = 2$
(b)	$(y + 3 + 2)^2 = 11$ or $11 - (y + 3 + 2)^2$		3	M1 substituting $x = y + 3$ into their $p - (x + q)^2$ M1
	$y + 3 + 2 = \pm \sqrt{11}$			A1 Both answers correct, ft their answer from (a) eg $-(3 + "q") \pm \sqrt{"p"}$
ALT (b)	Alternative scheme			M2 for $-y^2 - 10y - 14 = 0$ or $y^2 + 10y + 14 = 0$
		$-5 \pm \sqrt{11}$		A1 cao, both values correct
(c)		$(-1, 3)$	1	B1 cao
				Total 6 marks