

Question	Working	Answer	Mark	Notes		
1	$73 \div 200 (=0.365)$ or $73 \times 100 (= 7300)$ or $1 \text{ cm} = 2 \text{ m oe}$ $“0.365” \times 100$ or $“7300” \div 200$ $73 \div 2$	36.5	3	M1 M1	Allow their incorrectly converted $73 \text{ m} \div 200$	M2 for $100 \div \frac{200}{73}$ oe
2		$4n + 3$	2	B2oe	e.g. $7 + 4(n - 1)$ or $4n + (7 - 4)$ etc allow $T_n = 4n + 3$ or $x = 4n + 3$ etc If not B2 then award B1 for answer of $4n + k$ ($k \neq 3$) or $n = 4n + 3$	
3	$90 \div (2 + 13) (= 6)$ or $\frac{12 + x}{90 + x} = \frac{1}{3}$ $“6” \times 2 (=12)$ or $“6” \times 13 (=78)$ or $3(12 + x) = 90 + x$ $(“78” \div 2) - “12”$ or $2x = 54$ or $“78” \times 3/2 - “78” - “12”$ oe	27	4	M1 M1 M1	M2 for $\frac{2}{15} \times 90 (=12)$ or $\frac{13}{15} \times 90 (=78)$ dep on a correct method for “78” and “12”	A1

Question	Working	Answer	Mark	Notes
4		Fully correct Venn diagram	4	B4 fully correct Venn diagram with labels <i>A</i> and <i>B</i> (If not B4 then B3 for 3 correct regions, B2 for 2 correct regions B1 for 1 correct region)
5	$123 - 67 (=56)$ or $2x = 123 - 67$ or $2x + y = 67$ or $4x + y = 123$ oe $(x = \text{length of tile}, y = \text{width of tile})$ e.g. "56" $\div 2 (=28)$ $67 - 56 (=11)$ or $67 - 2 \times "28" (=11)$ or $123 - 4 \times "28" (=11)$ $(67 - 2 \times "11") \times (123 - 2 \times "11")$ (45×101) or $123 \times 67 - 12 \times "28" \times "11"$ $(8241 - 3696)$	4545	5	M1 M1 for method to find length or width M1 for method to find other dimension M1 dep on M2 A1

Question	Working	Answer	Mark	Notes																								
6 (a)	$2 \times 2 \times 2 \times 2 \times 2 \times 3$ or $2 \times 2 \times 2 \times 3 \times 5$ e.g. <table border="1"> <tr><td>2</td><td>96</td><td>120</td></tr> <tr><td>2</td><td>48</td><td>60</td></tr> <tr><td>2</td><td>24</td><td>30</td></tr> <tr><td>3</td><td>12</td><td>15</td></tr> <tr><td></td><td>4</td><td>5</td></tr> </table> <table border="1"> <tr><td>6</td><td>96</td><td>120</td></tr> <tr><td>4</td><td>16</td><td>20</td></tr> <tr><td></td><td>4</td><td>5</td></tr> </table>	2	96	120	2	48	60	2	24	30	3	12	15		4	5	6	96	120	4	16	20		4	5			M1 for one number written as product of prime factors number may be at the end of factor trees or on ‘ladder’ diagrams or Use of table method (allow 1 error), 2 examples shown but could have 2, 3, 4, 6, 12, 24 along the side or at least 2 factors for each (excluding 1, 96, 120)
2	96	120																										
2	48	60																										
2	24	30																										
3	12	15																										
	4	5																										
6	96	120																										
4	16	20																										
	4	5																										
(b)		24	2	A1 or $2^3 \times 3$ oe M1 for $2^m \times 3^n \times 5^p \times 7^q \times 11^r$ with at least two of $m = 4, n = 1, p = 2, q = 2, r = 1$ (or omission of one with others fully correct) NB: e.g. 2^4 could be 2×2^3 or prime numbers may be seen in a Venn diagram – if so must be correctly placed																								
		646 800	2	A1 or $2^4 \times 3 \times 5^2 \times 7^2 \times 11$ oe																								

Question	Working	Answer	Mark	Notes		
7 (a)	$8500 \times 0.023 (=195.5)$ or $8500 \times 1.023 (=8695.5)$ $((8500 + "195.5") \times 1.023) \times 1.023$			M1		M2 for 8500×1.023^3 (M1 for 8500×1.023^n)
(b)	$687\ 700 \div 0.92 (=747\ 500)$ or $687\ 700 \div 1.15 (=598\ 000)$ or $1.15 \times 0.92 (=1.058)$ $687\ 7000 \div (0.92 \times 1.15)$	9100 650 000	3 3	M1 M1 A1 M1 M1 A1	complete method for $9100 - 9100.1$ (answer for 600(.1) gains M2A0) a correct first step	Dep on M1 for completely correct method

Question	Working	Answer	Mark	Notes
8 (a)	$0.65 = \frac{3.5}{V}$ $(V =) \frac{3.5}{0.65}$	5.38	3	M1 M1 A1 for answer in range 5.38 – 5.385 SCB1 for a “correct” equation involving V with digits 65 and 35 where units have been converted eg $V = \frac{3500}{0.65}$
(b)	$630 \times 1000 (=630\,000)$ $60 \times 60 (=3600)$ eg $630 \div 60 (=10.5)$ $630\,000 \div 60 (=10\,500)$ $1000 \div 60 (=16.66...)$ $1000 \div (60 \times 60) (=0.277...)$ $1 \div (60 \times 60) (= 0.000277...)$ $\frac{630 \times 1000}{60 \times 60} \text{ oe}$	175	3	M1 for converting 630 km to m or 1 hour to seconds or for correct operation(s) using at least 2 of the numbers 630, 1000, 60, 60 M1 Fully correct method (M2 for $630 \div 3.6$)

Question	Working	Answer	Mark	Notes
9	<p>e.g. $4x + 5y = 4$ $4x - 2y = 18$</p> <p>with the operation of subtraction</p> $4x + 5y = 4$ $10x - 5y = 45$ <p>With the operation of adding</p> $y = 2x - 9 \text{ and } 4x + 5(2x - 9) = 4$			<p>M1 for correct method to eliminate one variable – multiplying one or both equations so the coefficient of x or y is the same in both with the intention to add or subtract to eliminate one variable(condone one arithmetic error) or isolating x or y in one equation and substituting into the other equation</p> <p>M1 (dep) for substitution of found variable into one equation or correct method to eliminate second variable</p> <p>A1 Dep on M1</p>
10	<p>$3 \div 2 (=1.5)$ or eg $\frac{4-1}{2(-0)}$ or $c = 1$</p> <p>$y = "1.5"x + c$ or $y = mx + 1$ or eg $y - 4 = m(x - 2)$</p>	$x = 3.5 \text{ oe}, y = -2$	3	<p>M1 for correct method to find gradient – may see this on grid. For $c = 1$, could be $(L =) mx + 1$ oe or for $1.5x + c$</p> <p>M1 for use of $y = mx + c$ with either m or c or for $(L =) 1.5x + 1$</p> <p>A1 oe eg $y - 4 = \frac{3}{2}(x - 2)$</p>

Question	Working	Answer	Mark	Notes
11	<p>Basic comparisons from information: eg The median is greater for Science/less for Maths The IQR (or range) is higher for Science/less for Maths The median is 2.5 marks higher for Science The IQR (or range) is 7 marks more for Science Comparisons in context: eg On the whole students have higher marks in Science The spread of results is greater for Science Results are more consistent for Maths</p>	Two comparisons one for IQR and one for median	2	B2 For 2 comparisons in context or 1 basic comparison and 1 comparison in context (B1 for 1 or 2 basic statements or for 1 statement in context) NB; any numbers used must be correct for the award of the mark

Question	Working	Answer	Mark	Notes
12 (a)		$\frac{1}{27x^6y^{15}}$	1	B1
(b)			2	B2 If not B2 then B1 for any two correct terms in a product
(c)	$2(e^2 - 9)$ or $(2e - 6)(e + 3)$ or $(e - 3)(2e + 6)$	$2(e - 3)(e + 3)$	2	M1 A1 M1
(d)	$m^2 = \frac{6a + r}{5r}$ $m^2 \times 5r = 6a + r$ $5rm^2 - r = 6a$	$r = \frac{6a}{5m^2 - 1}$	4	M1 M1 A1 or for $r = \frac{-6a}{1 - 5m^2}$ oe NB: to award A1 we must see $r = \frac{6a}{5m^2 - 1}$ in working if $\frac{6a}{5m^2 - 1}$ alone is given as answer

Question	Working	Answer	Mark	Notes
13	$4 \times 5 + 13 \times 6 + 16 \times 7 + 8x + 6 \times 9$ $(20 + 78 + 112 + 8x + 54) \text{ or}$ $264 + 8x$ $(4 + 13 + 16 + 6 + x) \times 7 (=7(39 + x) = 273 + 7x) \text{ or}$ $(4 + 13 + 16 + 6) \times 7 (=273) \text{ oe or } \frac{"264 + 8x"}{"39 + x"}$ $\frac{"264 + 8x"} {"39 + x"} = 7 \text{ oe eg } "264 + 8x" = "(39 + x) \times 7$ <p>or "273" - "264"</p>	9	4	M1 at least 3 products correct with intention to add M1 for use of mean M1

Question	Working	Answer	Mark	Notes	
14 (a)		0.65 0.35, 0.65 0.35, 0.65	2	B2oe	for all correct If not B2 then award B1 for 0.65 in any of the 3 possible positions NB all values may be given as fractions ft from (a)
	(b) $0.35 \times 0.35 \text{ or } 0.35 \times 0.65 \text{ or } 0.65 \times 0.35 \text{ or }$ 0.65×0.65 $0.35 \times 0.35 + 0.35 \times 0.65 + 0.65 \times 0.35 \text{ or }$ $1 - 0.65 \times 0.65$	0.5775			M1 M1 ft from (a) oe e.g. $\frac{231}{400}$, 0.58 or 58% or better

Question	Working	Answer	Mark	Notes
15 (a)	<p>e.g. $\frac{1}{2} \times (x+5+3x-2) \times (2x-3)$ or $0.5(4x+3)(2x-3)$ oe</p> <p>eg. $\frac{1}{2} \times (8x^2 - 12x + 6x - 9) = 133$ or $8x^2 - 12x + 6x - 9 = 266$</p>	shown	3	<p>M1 correct algebraic expression for area</p> <p>M1 for correct equation with brackets expanded</p> <p>A1 for completion to given equation dep on M2</p>
(b)	$\frac{-6 \pm \sqrt{36 - 8800}}{2 \times 8} \text{ or } \frac{6 \pm \sqrt{36 + 8800}}{16} \text{ or } \frac{6 \pm \sqrt{8836}}{16}$ <p>or $(4x - 25)(2x + 11) (=0)$</p>	6.25 oe	3	<p>M2 If not M2 then award M1 for</p> $\frac{-6 \pm \sqrt{(-6)^2 - 4 \times 8 \times -275}}{2 \times 8}$ <p>Condone one sign error in substitution; allow evaluation of individual terms e.g. 36 in place of $(-6)^2$ [allow -6^2 or 6^2 in place of $(-6)^2$, throughout allow + rather than \pm]</p> <p>or $(4x \pm 25)(2x \pm 11) (=0)$</p> <p>(if student gains M1 and shows both answers the 2nd M1 can be awarded)</p> <p>ft from an incorrect 3 term quadratic equation</p> <p>A1 dep on M1 and 6.25 oe alone given as final answer</p>

Question	Working	Answer	Mark	Notes
16	e.g. $\sqrt[3]{\frac{960}{405}} \left(= \frac{4}{3} \right) (=1.3...) \text{ or } \sqrt[3]{\frac{405}{960}} \left(= \frac{3}{4} \right) (=0.75)$ $\left(\frac{3}{4} \right)^2 \times 928 \text{ or } 928 \div \left(\frac{4}{3} \right)^2 \text{ oe}$	522	3	M1 for a correct linear scale factor M1 for a complete method A1
17 (a) (b) (c)	$g(-1.5) = 1 \div (1 - 2 \times -1.5) (=0.25) \text{ or}$ $fg(x) = 4 - 3 \times \left(\frac{1}{1-2x} \right) \text{ oe}$	-11 0.5 oe	1 1	B1 B1 M1 $g(-1.5)$ must be the correct calculation alone.
18	7.5 or 8.5 or 4.65 or 4.55 25 or 15 $\frac{4.55}{25-7.5}$	3.25 oe	2	M1 M1 M1 for $\frac{LB_1}{UB - LB_2}$ with $4.55 \leq LB_1 < 4.6 \text{ and } 20 < UB \leq 25 \text{ and } 7.5 \leq LB_2 < 8$ A1 for 0.26 from correct working

Question	Working	Answer	Mark	Notes
19	<p>At least 2 of: $2.5 \times 2 (=5)$ or $4 \times 3 (=12)$ or $3.4 \times 5 (=17)$ or $2.2 \times 5 (=11)$ or $(1 \times) 15$ or $(1 \times) 10 (=10)$ or e.g. at least 2 of 100, 240, 340, 220, 300 or 200</p> <p>$2.5 \times 2 + 4 \times 3 + 3.4 \times 5 + 2.2 \times 5 + (1 \times) 15$ or $5 + 12 + 17 + 11 + 15 (=60)$ or e.g. $100 + 240 + 340 + 220 + 300 (=1200)$</p>	$\frac{1}{6}$ oe	3	<p>M1 for working with area of at least 2 bars could be using freq density \times mins or use of counting squares or blocks</p> <p>M1 for method to find total number of people (allow one error) or total number of squares/blocks for method used (allow one error)</p> <p>A1 for $\frac{1}{6}$ or $16.\overline{6}\%$ or $0.16\overline{6}$ or 1 in 6 (percentage or decimal rounded or truncated to 3 or more sig figs)</p>

Question	Working	Answer	Mark	Notes
20	$\text{angle } CDB = x$ or $\text{angle } CAB = x$ $\text{angle } CBA = 180 - 2x$ $\text{angle } CDA = 180 - (180 - 2x) = 2x$	proof with reasons	5	M1 M1 M1 B1 dep on M1 for any one appropriate circle theorem reason A1 for complete proof with full reasons <u>alternate segment</u> theorem, angles in a <u>triangle</u> sum to <u>180°</u> , <u>isosceles triangle</u> , <u>opposite angles of a cyclic quadrilateral</u> sum to <u>180°</u>
	Alternative method $\text{angle } CDB = x$ or $\text{angle } CAB = x$ $\text{angle } ACB = x$ $\text{angle } ACQ = 2x$ and $\text{angle } CDA = 2x$	proof with reasons	5	M1 M1 M1 B1 dep on M1 for any one appropriate circle theorem reason A1 for complete proof with full reasons <u>alternate segment</u> theorem, <u>isosceles triangle</u>
	Alternative method $\text{angle } OCB = 90 - x$ $\text{angle } BOC = 180 - 2(90 - x)$ $(=2x)$ $\text{angle } AOB = 2x$ and $\text{angle } CDA = 2x$	proof with reasons	5	M1 M1 M1 B1 dep for any one appropriate circle theorem reason A1 for complete proof with full reasons angle between <u>tangent and radius</u> is <u>90° oe</u> , angles in a <u>triangle</u> sum to <u>180°</u> , <u>isosceles triangle</u> , angle at <u>centre</u> is <u>twice angle at circumference oe</u>

Q20 contd	Alternative method where students assume $CDA = 2x$ and must work to show that $BCQ = x$			
	eg angle $ABC = 180 - 2x$ Angle $CAB = \text{angle } ACB =$ $[180 - (180 - 2x)] \div 2 = x$ $BCQ = CAB = x$			M1 M1 M1 B1 Dep on M1 for any one appropriate circle theorem reason A1 For complete proof with reasons e.g. <u>opposite angles of cyclic quadrilateral sum to 180°</u> <u>angles in triangle sum to 180°</u> <u>isosceles triangle</u> <u>alternate segment theorem</u>
21	$y = \frac{6}{4}x + 33$ or (gradient =) $\frac{6}{4}$ oe $m \times \frac{6}{4} = -1$ or (gradient of M =) $-\frac{2}{3}$ oe $\frac{k-6}{-4-5} = -\frac{2}{3}$	12	4	M1 M1 M1 dep or complete method to find equation of line ($3y = -2x + 28$) and then substitution of $x = -4$ A1

Question	Working	Answer	Mark	Notes	
22	$\frac{\pi r^2}{\pi r^2 + \pi rl} = \frac{3}{8} \text{ or } \pi r^2 : \pi r^2 + \pi rl = 3 : 8 \text{ or}$ $\pi r^2 : \pi rl = 3 : 5 \text{ or } \pi r^2 = 3 \text{ and } \pi rl = 5$ $8\pi r^2 = 3(\pi r^2 + \pi rl) \text{ or } 5\pi r^2 = 3\pi rl \text{ or}$ $[r = \sqrt{\frac{3}{\pi}} (= 0.9772...) \text{ and } l = \frac{5}{\pi r}]$ $\frac{r}{l} = \frac{3}{5} \text{ oe or } l = \frac{5}{\pi \sqrt{\frac{3}{\pi}}} (= 1.62...)$ $\text{e.g. } \sin\left(\frac{AVB}{2}\right) = \frac{3}{5} \text{ oe eg } \sin\left(\frac{AVB}{2}\right) = \frac{\sqrt{3/\pi}}{\pi \sqrt{3/\pi}}$ $2 \times \sin^{-1}\left(\frac{3}{5}\right) \text{ oe}$	73.7	6	M1 M1 M1 M1 M1	$\sin^{-1}\left(\frac{3}{5}\right) = 36.86\dots$ awrt

Question	Working	Answer	Mark	Notes
23	<p>e.g. $\overrightarrow{AB} = \overrightarrow{AD} + \overrightarrow{DB}$ or</p> $\begin{pmatrix} 2 \\ -3 \end{pmatrix} + \begin{pmatrix} -1 \\ 7 \end{pmatrix}$ $\overrightarrow{AB} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$ $\overrightarrow{DC} = 3 \times \begin{pmatrix} 1 \\ 4 \end{pmatrix} \left(= \begin{pmatrix} 3 \\ 12 \end{pmatrix} \right)$ $\overrightarrow{BC} = \begin{pmatrix} 1 \\ -7 \end{pmatrix} + \begin{pmatrix} 3 \\ 12 \end{pmatrix} \left(= \begin{pmatrix} 4 \\ 5 \end{pmatrix} \right) \text{ oe or}$ $\overrightarrow{BC} = \begin{pmatrix} -1 \\ -4 \end{pmatrix} + \begin{pmatrix} 2 \\ -3 \end{pmatrix} + \begin{pmatrix} 3 \\ 12 \end{pmatrix} \left(= \begin{pmatrix} 4 \\ 5 \end{pmatrix} \right) \text{ oe}$	$\sqrt{41}$ cao	5	M1 for a correct vector equation for \overrightarrow{AB} A1 M1 M1 A1 No isw