

International GCSE Maths

Apart from Q9, 10, 12, 17b, 18, 19a & 21 (where the mark scheme states otherwise) the correct answer, unless obtained from an incorrect method, should be taken to imply a correct method.

Q	Working	Answer	Mark	Notes
1 (a)	$5 \times (-2)^2 - (-2)^3 (= 20 - -8)$	28	2	M1 for correct expression or at least one of 20 or 5×4 or $- - 8$ or $(+)$ 8
				A1
(b)		2p(4p - 1)	2	B2 B1 for $p(8p - 2)$ or $2(4p^2 - p)$ or $2p(4p - 1)$ with two terms inside the bracket with one term correct.
(c)		$12t^2 - 8t$	2	B2 B1 for $12t^2$ or $- 8t$
(d)	$5x^2 + 20x - 2x - 8$	$5x^2 + 18x - 8$	2	M1 for 4 correct terms (ignoring signs) or 3 correct terms with correct signs. or $5x^2 + 18x + \dots$ or $\dots + 18x - 8$
				A1
				Total 8 marks

2	0.5 \times π \times 6^2 ($= 56.54\dots$) or 12×6 ($= 72$) or $\pi \times 6^2$ oe		3	M1
	“72” – “56.54...”			M1 dep M1 for a complete method
	15.5			A1 15.4 to 15.5
				Total 3 marks

5	(a)	vertices at $(-9, 6)$ $(-9, 9)$ $(-3, 9)$ $(-6, 6)$	Shape in correct position	2	B2	B1 for congruent shape in correct orientation but wrong position or quadrilateral with 2 or 3 vertices correct.
	(b)	vertices at $(7, 3)$ $(10, 6)$ $(13, 6)$ $(13, 3)$	Shape in correct position	1	B1	
	(c)		enlargement scale factor 2 centre $(-3, 3)$	3	B1	for enlargement, enlarge, etc so long as no mention of rotation, reflection or translation, flip, move etc.
					B1	SF 2, double, two times etc.
					B1	$(-3, 3)$ stated. Accept about, from etc. with no mention of line, or column vector.

6	$x \times 1.05 = 1.26 \text{ oe}$ eg $(x =) 1.26 \div 1.05 \text{ oe}$ $(= 1.2)$	or $30 \times 1.26 (= 37.80)$	or $30 \div 1.05 (= 28.57)$		3	M1
	$30 \times "1.2"$	"37.80" $\div 1.05$	"28.57..." $\times 1.26$			M1
				36		A1 cao If no marks awarded, SC B1 for one operation used correctly, even with another incorrect operation. eg $1.26 \times 0.95 \times 30 \text{ oe}$ or $1.26 \times 1.05 \times 30 \text{ oe}$ or $1.26 \div 0.95 \times 30 \text{ oe}$

7		$y \geq 1$ oe $x \leq 3$ oe $y \leq 3x - 2$ oe	3	B1 Allow $1 \leq y \leq 7$ B1 Allow $1 \leq x \leq 3$ B1 Condone $<$ and $>$ in place of \leq and \geq throughout. SC B1 if no marks awarded, recognition of lines $x = 3$ and $y = 1$. Allow incorrect inequality and condone use of equals signs eg $y < 1$, $x = 3$ may be seen on diagram.
				Total 3 marks

8	(a)	Pacific	1	B1	Accept 1.357×10^5
	(b)	$1.119 \times 10^5 - 1.797 \times 10^4$	2	M1	Accept $111\ 900 - 17\ 970$ oe or $93\ 930$ or $-93\ 930$
		$9.393(0) \times 10^4$		A1	Accept $(\pm) 9.393(0) \times 10^4$ or $(\pm) 9.39 \times 10^4$ or $(\pm) 9.4 \times 10^4$
					Total 3 marks

9	eg $(x \pm 20)(x \pm 1)$	$\frac{-(-21) \pm \sqrt{(-21)^2 - 4 \times 1 \times 20}}{2 \times 1}$ <p>or $\left(x - \frac{21}{2}\right)^2 - \left(\frac{21}{2}\right)^2 + 20 = 0$</p>		3	M1	If factorising, allow brackets which expanded give 2 out of 3 terms correct – if using formula or completing the square allow one sign error and some simplification – allow as far as eg $\frac{21 \pm \sqrt{441 - 80}}{2}$ or eg $\left(x - \frac{21}{2}\right)^2 - \frac{361}{4} = 0$ oe
	$(x - 20)(x - 1)$	$\text{eg } \frac{21 \pm \sqrt{441 - 80}}{2} \text{ or}$ $\frac{21 \pm \sqrt{361}}{2} \text{ or } \frac{21 \pm 19}{2}$ <p>or $x = \pm \sqrt{\frac{361}{4}} + \frac{21}{2}$ oe</p>			M1	dep on M1 for correct factorisation, or a correct expression for x if completing the square. or a correct substitution into quadratic formula with some processing.
			1, 20		A1	for both correct values, dep on 1st M1 with no incorrect working.

10	$(11 \times 3) + (8 \times 5) + (6 \times 7) + (5 \times 9) (= 160)$ $(= 33 + 40 + 42 + 45 = 160)$		4	M1 Correct numerical products using midpoints (allowing one error) with intention to add. May be seen in table.
	$“160” + x = 4.25 \times (11 + 8 + 6 + 5 + x)$ oe or $\frac{“160” + x}{“30” + x} = 4.25$ or $“160” + x = 4.25 \times “30” + 4.25x$			M1 dep M1 for correct equation ft <i>their</i> 160.
	$“160” - “127.5” = 4.25x - x$ or $32.5 = 3.25x$			M1 Isolating x and number terms
		10		A1 dep 1st M1
				Total 4 marks

Alternative Mark Scheme for question 10

10	$(11 \times 3) + (8 \times 5) + (6 \times 7) + (5 \times 9)$ $(= 33 + 40 + 42 + 45 = 160)$		4	M1 Correct numerical products using midpoints (allowing one error) with intention to add. May be seen in table.
	$4.25y = “160” + [y - (11 + 8 + 6 + 5)]$ oe $4.25y = “160” + y - 30$			M1 dep M1 for correct equation ft <i>their</i> 160, where y = total number of pupils
	$4.25y - y = “160” - 30$ or $3.25y = 130$ or $y = 40$			M1 Isolating y and number terms or $y = 40$
		10		A1 dep 1st M1
				Total 4 marks

11	$360 - 40 (= 320)$ or $\frac{320}{360}$ oe or $\frac{40}{360} \times 2\pi \times 9 (= 6.28\dots)$		4	M1
	$\frac{320}{360} \times 2\pi \times 9 (= 16\pi = 50.26\dots)$ or $2\pi \times 9 - "6.28" (= 50.26)$			M1
	$"50.26" + 2 \times 9$			M1 complete method to find perimeter
		68.3		A1 68.2 to 68.3
				Total 4 marks

12	eg. $10x + 35y = 85$ $10x + 6y = -2$ with the operation of subtraction or $29y = 87$ or $6x + 21y = 51$ $35x + 21y = -7$ with the operation of subtraction or $29x = -58$ or eg $5\left(\frac{17-7y}{2}\right) + 3y = -1$ or eg $5x + 3\left(\frac{17-2x}{7}\right) = -1$		4	M1 for correct method to eliminate one variable – multiplying one or both equations so the coefficient of x or y is the same in both, with the correct operation to eliminate one variable (condone one arithmetic error) or isolating x or y in one equation and substituting into the other (condone one arithmetic error).
				M1 dep 1st M1 Substitute found value into one equation or correct method to eliminate second unknown.
		$x = -2$ $y = 3$		A1 dep 1st M1 A1
				Total 4 marks

13	$\sin 23^\circ = \frac{"h"}{500}$ oe or $\cos 67^\circ = \frac{"h"}{500}$ oe or $\frac{"h"}{\sin 23^\circ} = \frac{500}{\sin 90^\circ}$ or $\frac{\sin 23}{"h"} = \frac{\sin 90}{500}$ oe or $\cos 23^\circ = \frac{"x"}{500}$ oe or $"x" = 500 \cos 23^\circ$ ($= 460.25..$) and $"h"^2 = 500^2 - ("460.25...")^2$ oe		3	M1 for a correct expression involving "h"
	$"h" = 500 \times \sin 23^\circ$ oe or $"h" = \sqrt{500^2 - ("460.25...")^2}$			M1
		195.4		A1 195 – 195.4
				Total 3 marks

14	$0.85 \times x^2 = 1.0285$ or $85 \times x^2 = 102.85$ oe or $(x^2 =) 1.0285 \div 0.85$ or $(x^2 =) 102.85 \div 85$ oe or 1.21 oe		4	M2 for a correct equation using their chosen letter or value in place of letter, or a correct division or 1.21 seen otherwise: (M1 for either 0.85 or 1.0285 seen)
	$(x =) \sqrt{1.0285 \div 0.85}$ or $(x =) \sqrt{102.85 \div 85}$ oe or $(x =) 1.1(0)$		M1	for a correct expression or value for x
		10	A1	
				Total 4 marks

Alternative Mark Scheme for Q14				
14	$\left(\frac{100+y}{100}\right)^2 \times 0.85 = 1.0285$ oe or $\left(\frac{100+y}{100}\right)^2 = 1.21$ oe or $10^4 + 200y + y^2 = 12100$ oe		4	M2 for a correct equation using their chosen letter, otherwise: (M1 for either 0.85 or 1.0285 seen)
	$\frac{100+y}{100} = 1.1$ or $100+y = 110$ oe or $(y+210)(y-10) = 0$		M1	for a correct equation involving y with no square terms or a correct method for solving the quadratic: If factorising, allow brackets which expanded give 2 out of 3 terms correct – if using formula or completing the square allow one sign error and some simplification – allow as far as eg $\frac{-200 \pm \sqrt{40000 + 8400}}{2}$ or eg $(y+100)^2 - 12100 = 0$ oe
		10	A1	
				Total 4 marks

15	eg $(2m + 1)(2n + 1)$ or eg $(2m - 1)(2n + 3)$		4	M2 Product of 2 <u>different</u> odd numbers (in the form $2n + k$ where k is odd). Must have different letters/variables. (M1 for the product of same or different odd numbers where the variable is the same eg $(2n + 1)(2n - 1)$ or $(2n + 1)(2n + 3)$)
	eg $4mn + 2m + 2n + 1$ or eg $4n^2 + 4n + 1$ or eg $4n^2 - 1$ or eg $4n^2 + 8n + 3$			M1 dep M1 Multiplying out the two brackets with odd numbers correctly.
	eg $2(2mn + m + n) + 1$ therefore odd	Proved		A1 dep M3 Factorising <u>and</u> a conclusion or stating that the 3 leading terms are all even, hence result is odd.
				Total 4 marks

16 (a)		12, 38, 24, 6	2	B2 B2 for all 4 correct values, in correct regions. B1 for 2 or 3 correct values in correct regions
(b) (i)		$\frac{24}{80}$ oe	1	B1ft 0.3 ft their 24
(ii)	eg $62 + "12"$ or $80 - "6"$ oe			M1ft A complete method to find the number of elements in the required set.
		$\frac{74}{80}$ oe		A1 ft 0.925 Penalise incorrect probability notation once only
				Total 5 marks

17	(a)	$g(3) = -7$ or $f(3 - 10) = (3 - 10)^2 + 6$ or $3^2 - 20 \times 3 + 106$ oe		2	M1
		55			A1
	(b)	$(x - 10)^2 + 6 = x^2 + 6$		3	M1 Using $f(x - 10)$ and setting equal to $x^2 + 6$ M1 for $(x - 10)^2$ expanded correctly.
		$x^2 - 10x - 10x + 100$ oe			A1 dep 1st M1
		5			
	(c)		0	1	B1 accept $x \neq 0$ or $x = 0$
	(d)	eg $yx = 2x - 4$ oe or $xy = 2y - 4$ oe or $4 = 2x - yx$ or $4 = 2y - yx$		3	M1 Removing denominator equation may be rearranged M1 for correct factorisation or implied factorisation
		eg $4 = x(2 - y)$ oe or $4 = y(2 - x)$ oe or $\frac{4}{x} = 2 - y$ or $\frac{4}{y} = 2 - x$ or $\frac{4}{2 - y} = x$ or $\frac{4}{2 - x} = y$			
		$\frac{4}{2 - x}$ or $\frac{-4}{x - 2}$			A1 oe
					Total 9 marks

18	$\frac{5}{x+2} + \frac{3}{x(x+2)} \quad (=2)$ or $\frac{5x}{x^2+2x} + \frac{3}{x^2+2x} \quad (=2)$		5	M1 Factorising $x^2 + 2x$ in correct expression on LHS or for writing the two fractions over a common denominator.
	$\frac{5x+3}{x(x+2)} = 2 \text{ or } \frac{5x+3}{x^2+2x} = 2$ or $5x + 3 = 2x(x + 2)$ oe			M1 Correct simplified single fraction = 2 or correct equation with no fractions.
	$5x + 3 = 2x^2 + 4x$ oe			M1 Correct 3 term quadratic
	$2x^2 - x - 3 = 0$ $(2x - 3)(x + 1) = 0$ or $\frac{-1 \pm \sqrt{(-1)^2 - 4 \times 2 \times (-3)}}{2 \times 2}$ or $\left(x - \frac{1}{4}\right)^2 - \frac{1}{16} - \frac{3}{2} = 0$ oe			M1ft independent For solving <i>their</i> 3 term quadratic equation using any correct method. If factorising, allow brackets which expanded give 2 out of 3 terms correct (if using formula or completing the square allow one sign error and some simplification – allow as far as eg $\frac{1 \pm \sqrt{1+24}}{4}$ or eg $\left(x - \frac{1}{4}\right)^2 = \frac{25}{16}$ oe
		1.5 and -1		A1 oe dep on M3
				Total 5 marks

Alternative Mark Scheme for question 18 (obtaining a cubic)

18	$\frac{5(x^2 + 2x) + 3(x + 2)}{(x^2 + 2x)(x + 2)} \quad (=2) \text{ oe}$		5	M1	Correct fraction over a common denominator (may be 2 separate fractions)
	eg $5(x^2 + 2x) + 3(x + 2) = 2(x^2 + 2x)(x + 2)$ oe			M1	Correct equation with no fractions.
	$2x^3 + 3x^2 - 5x - 6 \quad (=0)$			M1	Correct cubic
	$(x + 1)(2x - 3)(x + 2) \quad (=0)$			M1	For product of 3 correct linear factors.
		1.5 and -1		A1	oe dep on M3 Do not award A mark if extra solution (-2) given.
					Total 5 marks

19	(a)	eg $(2^3)^2 \times \sqrt[3]{(2^2)^6}$ or $(2^3)^2 \times (4)^{\frac{6}{3}}$ or $4^3 \times 4^2$ or 2^6 or 2^4 seen or $2^6 \times 16$ or 64×4^2 or $8^2 \times 4^2$ or $8^2 \times 16$ or 64×16		3	M1 a correct first stage.
		$2^6 \times (2^{12})^{\frac{1}{3}}$ or 1024 or 32^2 or 4^5 or $2^6 \times 2^4$			M1 dep on 1st M mark.
			2^{10}		A1 dependent on first M1 isw if 2^{10} seen but then 10 given as answer.
	(b)	$(n^{-\frac{4}{5}} =) \frac{1}{16}$ or 0.0625 oe	eg $\left(n^{-\frac{1}{5}}\right)^4 = \left(\frac{1}{2}\right)^4$	4	M1 for sight of $\frac{1}{16}$ oe, even if raised to an incorrect power. or for algebraic approach, separating out the 4, or 5 or -1 in the power
		$(n =) 16^{\frac{5}{4}}$ or $0.0625^{-\frac{5}{4}}$ oe $(n =) 2^5$ or $\sqrt[4]{1048576}$ oe or $\frac{1}{0.0625^{\frac{5}{4}}}$ or $\left(\frac{1}{16}\right)^{-\frac{5}{4}}$	eg $(n =) \left(\frac{1}{2}\right)^{-5}$		M2 for a correct expression for n (M1 for one correct algebraic stage eg $n^{-\frac{1}{5}} = \frac{1}{2}$)
			32		A1
					Total 7 marks

20	$75 \times 2 (=150)$		5	M1 “150” for AOC may be seen on diagram.
	$\frac{"150" \times \pi r^2}{360}$ oe ($= 1.309r^2$ or $\frac{5\pi}{12}r^2$)			M1 dep 1st M1
	$0.5 \times \sin ("150") \times r^2$ oe ($= 0.25r^2$)			M1 dep 1st M1 a complete method to find the area of triangle OAC in terms of r
	eg $\frac{150\pi}{360}r^2 - 0.5\sin(150)r^2 = 200$ oe or $(1.309\dots - 0.25)r^2 = 200$			M1 correct equation in r^2 or rearranged to make r^2 or r the subject.
		13.7		A1 accept 13.7 – 13.8
				Total 5 marks

21	$\frac{6}{n} \times \frac{5}{n-1} \text{ or } \frac{n-6}{n} \times \frac{n-7}{n-1} \text{ oe}$ <p>or $\frac{6}{n} \times \frac{n-6}{n-1}$</p>		6	<p>M1 for red, red or blue, blue This may be seen as part of an equation allow eg $n-6-1$ in place of $n-7$</p> <p>or for red, blue</p>
	$\frac{6}{n} \times \frac{5}{n-1} \text{ and } \frac{n-6}{n} \times \frac{n-7}{n-1} \text{ oe}$ <p>or $2 \times \frac{6}{n} \times \frac{n-6}{n-1} \text{ oe}$</p>			<p>M1 for both products, with no other products This may be seen as part of an equation</p> <p>or for red, blue + blue, red</p>
	$\frac{6}{n} \times \frac{5}{n-1} + \frac{n-6}{n} \times \frac{n-7}{n-1} = \frac{9}{17} \text{ oe}$ <p>or $2 \times \frac{6}{n} \times \frac{n-6}{n-1} = 1 - \frac{9}{17} \text{ oe}$</p>			<p>M1 Correct equation</p> <p>or correct equation using the complementary event.</p>
	$2n^2 - 53n + 306 (= 0) \text{ oe}$			<p>A1 Correct simplification of equation to a 3 term quadratic. eg $8n^2 - 212n + 1224 (= 0)$</p>
	$(2n-17)(n-18) (= 0)$ <p>or $\frac{-53 \pm \sqrt{(-53)^2 - 4 \times 2 \times 306}}{2 \times 2}$</p> <p>or $\left(n - \frac{53}{4}\right)^2 - \left(\frac{53}{4}\right)^2 + 153 = 0 \text{ oe}$</p>			<p>M1 For solving correct 3 term quadratic equation using any correct method. If factorising, allow brackets which expanded give 2 out of 3 terms correct (if using formula or completing the square allow one sign error and some simplification – allow as far as eg</p> $\frac{53 \pm \sqrt{2809 - 2448}}{4}$ <p>or eg $\left(n - \frac{53}{4}\right)^2 = \frac{361}{16} \text{ oe}$</p> <p>or for both correct solutions of the correct quadratic. $n = 18, n = 8.5$</p>
		18		<p>A1 cao dep M3 do not award if non-integer solution also given.</p>
				Total 6 marks

22	$\sin\left(\frac{180-140}{2}\right) = \frac{MB}{8} \text{ oe or } \cos\left(\frac{140}{2}\right) = \frac{MB}{8} \text{ oe}$ or $\frac{8}{\sin 20} = \frac{AC}{\sin 140} \quad \text{and } (MB^2) = 8^2 - \left(\frac{"15.035"}{2}\right)^2$ or $AC = \sqrt{8^2 + 8^2 - 2 \times 8 \times 8 \times \cos 140} \quad (=15.035\dots)$ and $(MB^2) = 8^2 - \left(\frac{"15.035"}{2}\right)^2$		4	M1 for a correct expression with MB included, or an expression for MB^2 If using sine or cosine rule on the isosceles triangle ABC , use of Pythagoras required to obtain an expression for MB^2
	$(MB =) 8\sin("20") \quad (= 2.736) \text{ or } (MB =) 8\cos("70") \quad (= 2.736)$ or $(MB) = \sqrt{8^2 - \left(\frac{"15.035"}{2}\right)^2}$			M1
	$\tan TMB = \frac{10}{"2.736"}$	74.7		M1 dep 1st M1
				A1 74.65 to 74.75
				Total 4 marks
				TOTAL FOR PAPER 100 MARKS