

Answer ALL TWENTY FOUR questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

1 The table shows information about the heights, in cm, of 48 sunflowers in a garden centre.

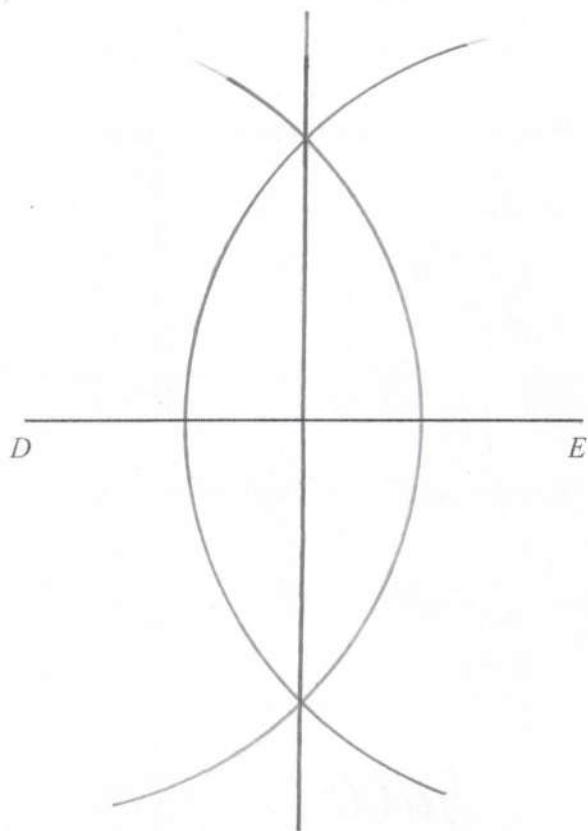
χ
95
105
115
125
135

χ	Height of sunflower (h cm)	Frequency
95	$90 < h \leq 100$	χ 8
105	$100 < h \leq 110$	χ 12
115	$110 < h \leq 120$	χ 15
125	$120 < h \leq 130$	χ 10
135	$130 < h \leq 140$	χ 3

760
1260
1725
1250
405

Work out an estimate for the mean height of the sunflowers.

$$\frac{5400}{48}$$


112.5

cm


(Total for Question 1 is 4 marks)

2 Use ruler and compasses to construct the perpendicular bisector of the line DE . You must show all your construction lines.

(Total for Question 2 is 2 marks)

3 $\mathcal{E} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

$A = \{2, 3, 5, 7\}$

$B = \{4, 6, 8, 10\}$

(a) Explain why $A \cap B = \emptyset$

A and B have no numbers in common

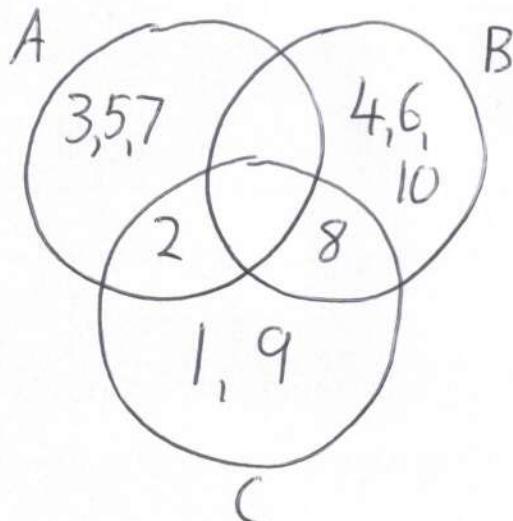
(1)

$x \in \mathcal{E}$ and $x \notin A \cup B$

(b) Write down the two possible values of x .

1 9

(1)


Set C is such that

$A \cup B \cup C = \mathcal{E}$

$A \cap C = \{2\}$

$B \cap C' = \{4, 6, 10\}$

(c) List all the members of set C .

1, 2, 8, 9

(2)

(Total for Question 3 is 4 marks)

4 A cylinder has diameter 14 cm and height 20 cm.

Work out the volume of the cylinder.

Give your answer correct to 3 significant figures.

$$r = 7$$
$$h = 20$$

$$V = \pi \times 7^2 \times 20$$

$$= 980\pi$$

$$= 3078.76$$

3080

cm³

(Total for Question 4 is 2 marks)

5 Josh buys and sells books for a living.

He buys 120 books for £4 each. $\Rightarrow £480$

He sells $\frac{1}{2}$ of the books for £5 each.

He sells 40% of the books for £7 each.

He sells the rest of the books for £8 each.

(a) Calculate Josh's percentage profit.

$$\left. \begin{array}{l} \frac{1}{2} \times 120 \times 5 = 300 \\ 0.4 \times 120 \times 7 = 336 \\ 0.1 \times 120 \times 8 = 96 \end{array} \right\} 732$$

$$\frac{732 - 480}{480} \times 100$$

52.5

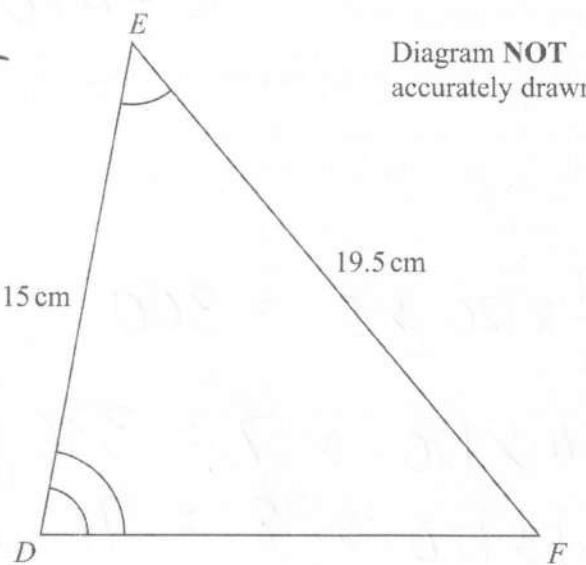
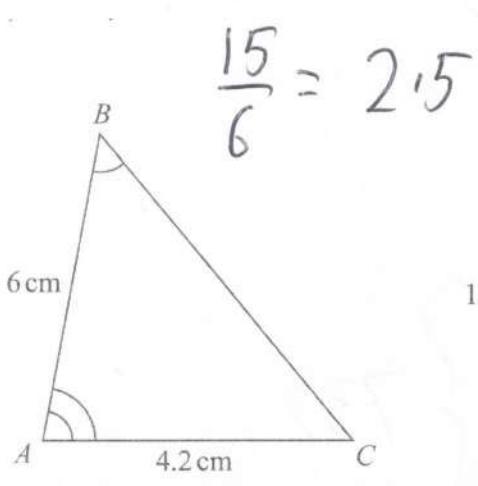
%

(5)

One book that Josh owns had a value of £15 on the 1st May 2019
The value of this book had increased by 20% in the last year.

(b) Find the value of the book on the 1st May 2018

$$? \times 1.2 = 15$$



$$15 \div 1.2 = 12.50$$

(3)

(Total for Question 5 is 8 marks)

6 ABC and DEF are similar triangles.

(a) Work out the length of DF .

$$4.2 \times 2.5$$

$$= 10.5 \text{ cm}$$

(2)

(b) Work out the length of BC .

$$19.5 \div 2.5$$

$$= 7.8 \text{ cm}$$

(2)

(Total for Question 6 is 4 marks)

7 30 students in a class sat a Mathematics test.
The mean mark in the test for the 30 students was 26.8

$$30 \times 26.8 = 804$$

13 of the 30 students in the class are boys.
The mean mark in the test for the boys was 25

$$\textcircled{B} 13 \times 25 = 325$$

Find the mean mark in the test for the girls.
Give your answer correct to 3 significant figures.

$$\textcircled{G} \frac{804 - 325}{17} = 28.176...$$

28.2

(Total for Question 7 is 3 marks)

8 Change a speed of x kilometres per hour into a speed in metres per second.
Simplify your answer.

$$\frac{x \times 1000}{60 \times 60} = \frac{10x}{36}$$

or

$$\frac{5x}{18}$$

(oe)

m/s

(Total for Question 8 is 3 marks)

9 Solve the simultaneous equations

$$\begin{array}{l} x + 2y = -0.5 \\ 3x - y = 16 \end{array}$$

(1)
(2)

Show clear algebraic working.

(1)
(2) $\times 2$

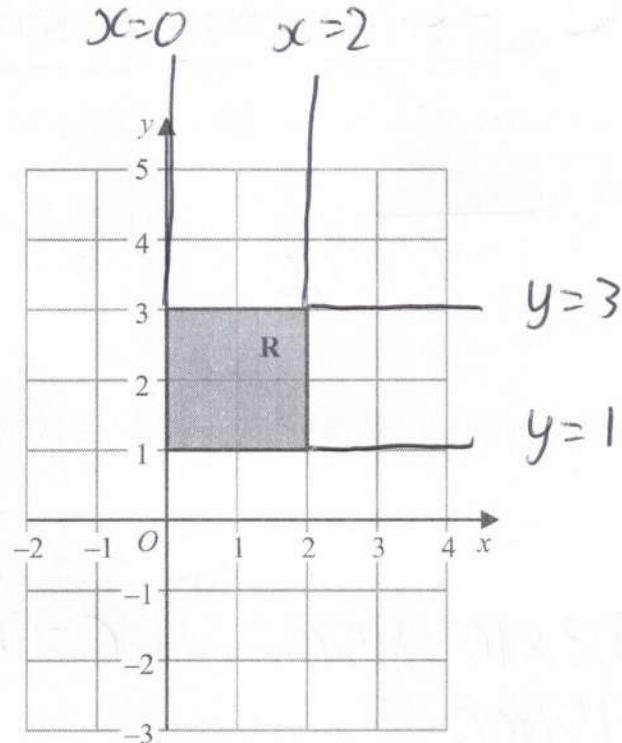
$$\begin{array}{r} x + 2y = -0.5 \\ 6x - 2y = 32 \\ \hline 7x = 31.5 \\ x = 4.5 \end{array}$$

$$\begin{array}{l} (1) 4.5 + 2y = -0.5 \\ 2y = -5 \\ y = -\frac{5}{2} \end{array}$$

$$\begin{array}{l} x = 4.5 \\ y = -2.5 \end{array}$$

(Total for Question 9 is 3 marks)

10 The straight line L has gradient 5 and passes through the point with coordinates $(0, -3)$


(a) Write down an equation for L .

intercept

$$y = 5x - 3$$

(2)

(b)

The region R , shown shaded in the diagram, is bounded by four straight lines.

Write down the inequalities that define R .

$$1 \leq y \leq 3, \quad 0 \leq x \leq 2$$

(2)

(Total for Question 10 is 4 marks)

11 The table gives the average crowd attendance per match for each of five football clubs for one season.

Football club	Average crowd attendance
Monaco	9.5×10^3
Chelsea	4.2×10^4
Juventus	3.9×10^4
Oxford United	8.3×10^3
Barcelona	7.7×10^4

(a) Find the difference between the average crowd attendance for Barcelona and the average crowd attendance for Monaco.

Give your answer in standard form.

67500

6.75×10^4

(2)

Antonio says,

"The average crowd attendance for Chelsea is approximately 50 times that for Oxford United."

(b) Is Antonio correct?

You must give a reason for your answer.

$$\begin{aligned} OV &= 8.3 \times 10^3 \times 50 \\ &= 415,000 \end{aligned}$$

$$C = 42000$$

no

(2)

During last season the cost of a ticket to watch Seapron United increased by 15% and then decreased by 8%

(c) Work out the overall percentage change in the cost of a ticket to watch Seapron United during last season.

$$100 \times 1.15 \times 0.92 = 105.8$$

5.8

%

(2)

(Total for Question 11 is 6 marks)

12 $ABCD$ is a trapezium.

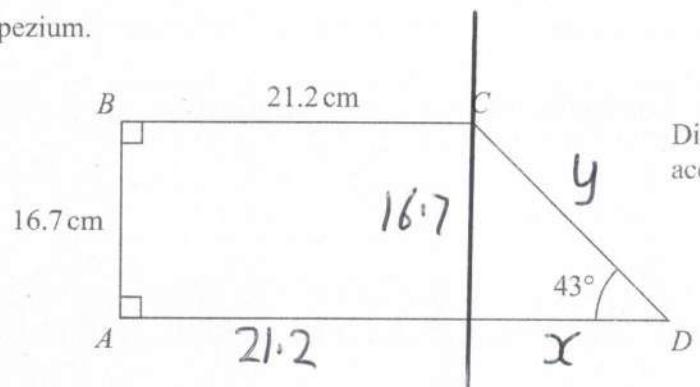


Diagram NOT
accurately drawn

Calculate the perimeter of the trapezium.
Give your answer correct to 3 significant figures.

$$x = \frac{16.7}{\tan 43^\circ} = 17.9085\ldots$$

$$y = \frac{16.7}{\sin 43^\circ} = 24.4868\ldots$$

$$P = 21.2 \times 2 + 16.7 + 17.9 + 24.4 \\ = 101.4$$

101

cm

(Total for Question 12 is 4 marks)

13 The table gives information about the times taken, in minutes, for 80 taxi journeys.

Time taken (t minutes)	Frequency
$0 < t \leq 5$	7
$5 < t \leq 10$	10
$10 < t \leq 15$	12
$15 < t \leq 20$	19
$20 < t \leq 25$	18
$25 < t \leq 30$	14

(a) Complete the cumulative frequency table.

Time taken (t minutes)	Cumulative frequency
$0 < t \leq 5$	7
$0 < t \leq 10$	17
$0 < t \leq 15$	29
$0 < t \leq 20$	48
$0 < t \leq 25$	66
$0 < t \leq 30$	80

(1)

(b) On the grid opposite, draw a cumulative frequency graph for your table.

14 Here are two vectors.

$$\vec{AB} = \begin{pmatrix} 6 \\ -9 \end{pmatrix} \quad \vec{CB} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

Find the magnitude of \vec{AC} .

$$\vec{AC} = \begin{bmatrix} 5 \\ 12 \end{bmatrix}$$

$$\sqrt{5^2 + 12^2}$$

13

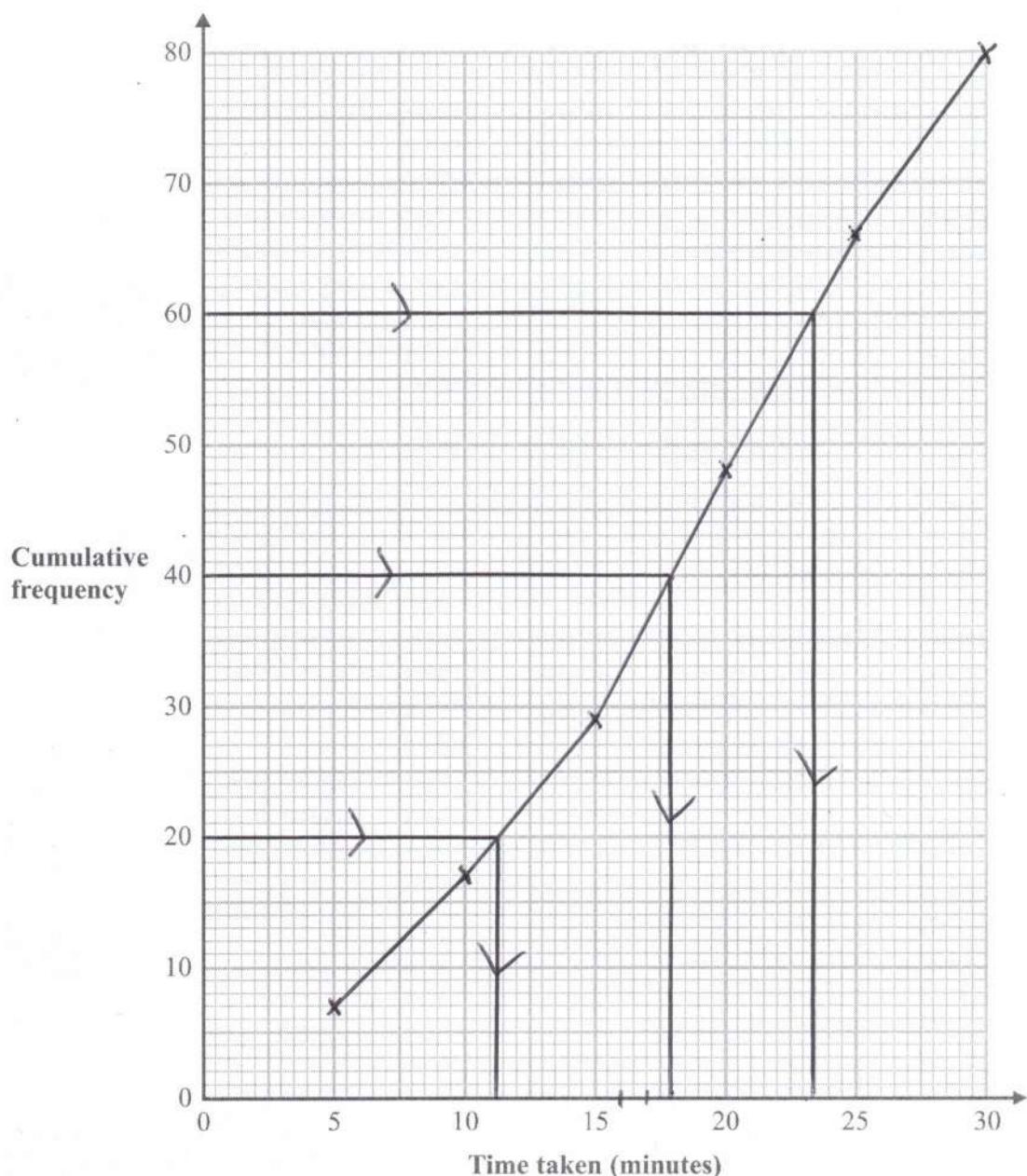
(Total for Question 14 is 3 marks)

15 Make x the subject of the formula $y = \sqrt{\frac{3x-2}{x+1}}$

$$y^2 = \frac{3x-2}{x+1}$$

$$y^2x + y^2 = 3x - 2$$

$$y^2x - 3x = -2 - y^2$$


$$x(y^2 - 3) = -2 - y^2$$

$$x = \frac{-2 - y^2}{y^2 - 3}$$

(Total for Question 15 is 4 marks)

$$\frac{y^2 + 2}{3 - y^2}$$

(2)

(c) Use your graph to find an estimate for the median.

$$[ms: 17-19]$$

18

minutes

(1)

(d) Use your graph to find an estimate for the interquartile range.

$$23.5 - 11.5$$

12

minutes

(2)

$$[ms: 9-13]$$

(Total for Question 13 is 6 marks)

$$\sqrt{8} = \sqrt{4\sqrt{2}} = 2\sqrt{2}$$

16 Show that $\frac{4+\sqrt{8}}{\sqrt{2}-1}$ can be written in the form $a+b\sqrt{2}$, where a and b are integers.

Show each stage of your working clearly and give the value of a and the value of b .

$$\begin{aligned} \frac{4+2\sqrt{2}}{\sqrt{2}-1} \times \frac{\sqrt{2}+1}{\sqrt{2}+1} &= \frac{4\sqrt{2} + 4 + 2\sqrt{4} + 2\sqrt{2}}{2-1} \\ &= \frac{6\sqrt{2} + 4 + 4}{1} \\ &= 8 + 6\sqrt{2} \end{aligned}$$

(Total for Question 16 is 3 marks)

17 y is directly proportional to the cube of x

$$y = 20h \text{ when } x = h \quad (h \neq 0)$$

(a) Find a formula for y in terms of x and h

$$y = Kx x^3$$

$$20h = Kxh^3$$

$$K = \frac{20}{h^2}$$

$$\frac{20x^3}{h^2}$$

$$y = \dots \quad (3)$$

(b) Find x in terms of h when $y = 67.5h$

Give your answer in its simplest form.

$$x^3 = \frac{yh^2}{20}$$

$$x^3 = \frac{67.5h^3}{20} = \frac{27h^3}{8}$$

$$\frac{3h}{2} \quad \textcircled{OE}$$

$$x = \dots \quad (2)$$

(Total for Question 17 is 5 marks)

18 The diagram shows a solid cuboid.

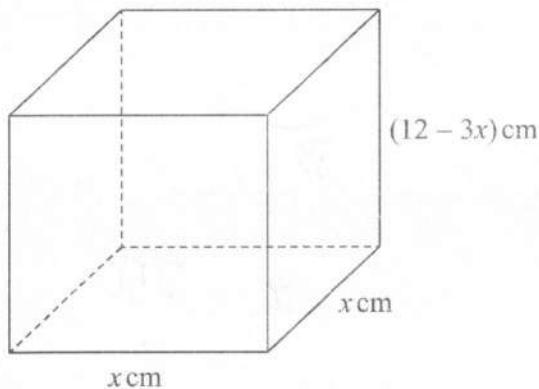


Diagram **NOT**
accurately drawn

The total surface area of the cuboid is $A \text{ cm}^2$

Find the maximum value of A .

$$A = 2x^2 + 4x(12 - 3x)$$

$$= 2x^2 + 48x - 12x^2$$

$$= 48x - 10x^2$$

$$\frac{dA}{dx} = 48 - 20x = 0$$

$$x = \frac{48}{20} = 2.4$$

$$A = 48 \times 2.4 - 10 \times 2.4^2$$

$$= 57.6 \text{ cm}^2$$

(Total for Question 18 is 5 marks)

19 $ABCD$ is a quadrilateral.

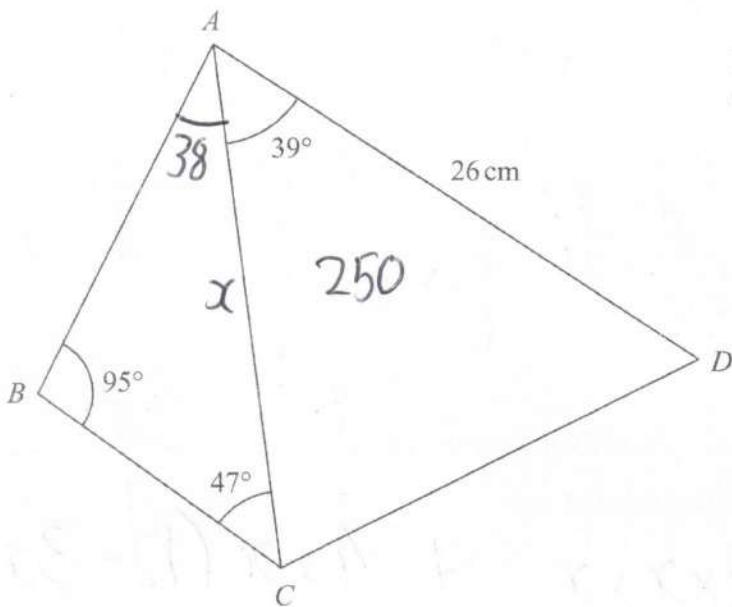


Diagram NOT
accurately drawn

The area of triangle ACD is 250 cm^2

Calculate the area of the quadrilateral $ABCD$.

Show your working clearly.

Give your answer correct to 3 significant figures.

$$250 = \frac{1}{2} \times 26 \times x \times \sin 39$$

$$x = 30.55799\dots$$

$$\frac{AB}{\sin 47} = \frac{30.56}{\sin 95}$$

$$AB = 22.435\dots$$

$$\begin{aligned} \text{Area } ABCD &= 250 + \frac{1}{2} \times 30.56 \times 22.435 \times \sin 38 \\ &= 461.058\dots \\ &= \underline{\underline{461 \text{ cm}^2}} \end{aligned}$$

20 The equation of the line L is $y = 9 - x$
 The equation of the curve C is $x^2 - 3xy + 2y^2 = 0$

L and C intersect at two points.

Find the coordinates of these two points.

Show clear algebraic working.

$$\Rightarrow x^2 - 3x(9-x) + 2(9-x)^2 = 0$$

$$x^2 - 27x + 3x^2 + 162 + 2x^2 - 36x = 0$$

$$6x^2 - 63x + 162 = 0$$

$$2x^2 - 21x + 54 = 0$$

$$x = \frac{21 \pm \sqrt{441 - 432}}{4}$$

$$x = 6$$

$$y = 9 - 6 = 3$$

$$x = 4.5$$

$$y = 9 - 4.5 = 4.5$$

(.....,.....) and (.....,.....)

(Total for Question 20 is 5 marks)

21 The diagram shows cuboid $ABCDEFGH$.

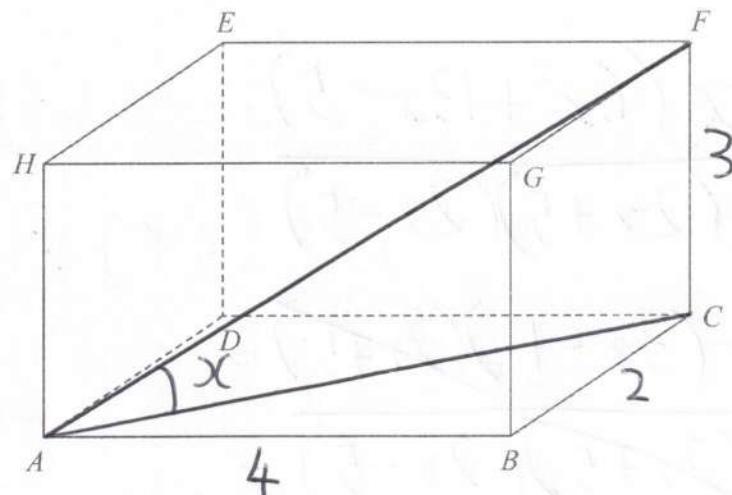


Diagram **NOT**
accurately drawn

For this cuboid

the length of AB : the length of BC : the length of $CF = 4 : 2 : 3$

Calculate the size of the angle between AF and the plane $ABCD$.

Give your answer correct to one decimal place

$$AC = \sqrt{4^2 + 2^2} = \sqrt{20} = 2\sqrt{5}$$

$$x = \tan^{-1} \left(\frac{3}{2\sqrt{5}} \right) = 33.85\ldots$$

33.9

(Total for Question 21 is 3 marks)

22 Simplify fully $\frac{6x^3 + 13x^2 - 5x}{4x^2 - 25}$

$$= \frac{x(6x^2 + 13x - 5)}{(2x+5)(2x-5)}$$

$$= \frac{x(3x-1)(2x+5)}{(2x+5)(2x-5)}$$

$$\frac{x(3x-1)}{2x-5}$$

(Total for Question 22 is 3 marks)

23 Boris has a bag that only contains red sweets and green sweets.

Boris takes at random 2 sweets from the bag.

The probability that Boris takes exactly 1 red sweet from the bag is $\frac{12}{35}$

Originally there were 3 red sweets in the bag.

Work out how many green sweets there were originally in the bag.
Show your working clearly.

$$\begin{array}{c} R \\ 3 \\ \hline G \\ x-3 \end{array}$$

$$P(1 \text{ Red}) = 2 \times \frac{3}{x} \times \frac{x-3}{x-1} = \frac{12}{35}$$

$$210x - 630 = 12x^2 - 12x$$

$$12x^2 - 222x + 630 = 0$$

$$2x^2 - 37x + 105 = 0$$

$$x = \frac{37 \pm \sqrt{37^2 - 4 \times 2 \times 105}}{4} = \frac{15}{3.5} \text{ (reject)}$$

$$15 \text{ sweets so green} = 12$$

(Total for Question 23 is 5 marks)

24 The function f is such that $f(x) = 3x - 2$

(a) Find $f(5)$

$$= 3 \times 5 - 2$$

13

(1)

The function g is such that $g(x) = 2x^2 - 20x + 9$ where $x \geq 5$

(b) Express the inverse function g^{-1} in the form $g^{-1}(x) = \dots$

$$y = 2[x^2 - 10x] + 9$$

$$y = 2[(x-5)^2 - 25] + 9$$

$$y = 2(x-5)^2 - 41$$

$$\frac{y+41}{2} = (x-5)^2$$

$$\pm \sqrt{\frac{y+41}{2}} = x-5$$

$$x = 5 \pm \sqrt{\frac{y+41}{2}}$$

$$g^{-1}(x) = 5 + \sqrt{\frac{x+41}{2}}$$

(4)

(Total for Question 24 is 5 marks)

TOTAL FOR PAPER IS 100 MARKS

