

Please write clearly in block capitals.

Centre number

--	--	--	--	--

Candidate number

--	--	--	--

Surname

Forename(s)

Candidate signature

I declare this is my own work.

GCSE MATHEMATICS

H

Higher Tier Paper 1 Non-Calculator

Thursday 16 May 2024

Morning

Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- mathematical instruments
- the Formulae Sheet (enclosed).

You must **not** use a calculator.

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer **all** questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer book.

For Examiner's Use	
Pages	Mark
2–3	
4–5	
6–7	
8–9	
10–11	
12–13	
14–15	
16–17	
18–19	
20–21	
22–23	
24	
TOTAL	

Advice

In all calculations, show clearly how you work out your answer.

J U N 2 4 8 3 0 0 1 H 0 1

IB/M/Jun24/G4007/E10

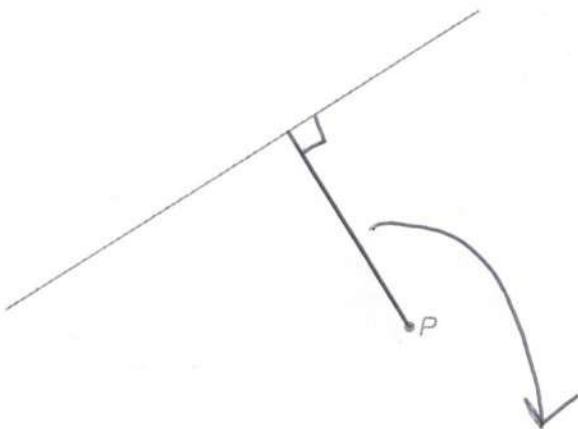
8300/1H

Answer all questions in the spaces provided.

1 Work out $12^2 \div \left(\frac{1}{3} \times \sqrt{36} \right)$

[3 marks]

$$= (44 \div \left(\frac{1}{3} \times 6 \right))$$


$$= 144 \div 2$$

72

Answer

2 Measure the **shortest** distance from point P to the line.Give your answer in millimetres.

[1 mark]

ms : 31 → 34

Answer _____ mm

0 2

IB/M/Jun24/8300/1H

3 The vector $\begin{pmatrix} -3 \\ 7 \end{pmatrix}$ translates A to B.

Write down the vector that translates B to A.

[1 mark]

Answer $\begin{pmatrix} 3 \\ -7 \end{pmatrix}$

4 The attendance for a rugby match is 8400 people to the nearest 100

$$\begin{pmatrix} +50 \\ -50 \end{pmatrix}$$

4 (a) Write down the minimum possible attendance.

[1 mark]

8350

Answer _____

4 (b) Write down the maximum possible attendance.

[1 mark]

8449

Answer _____

not continuous data so not 8450

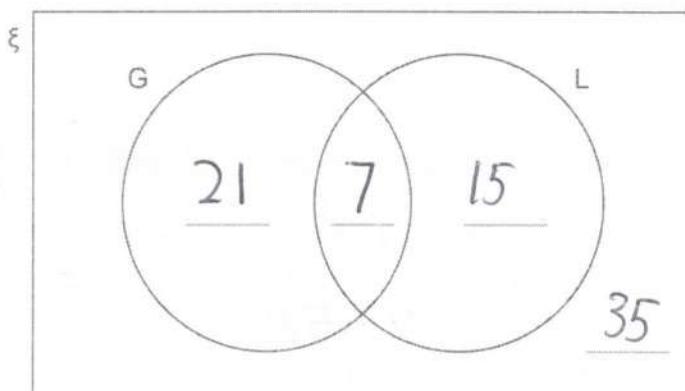
Turn over for the next question

5 A school year has 78 students.

28 wear glasses.

$\frac{1}{4}$ of the students who wear glasses are left-handed. $= 7$

30% of the students who do **not** wear glasses are left-handed.


$$10\% \text{ of } 50 = 5$$

5 (a) ξ = students in the school year

G = wears glasses

L = left-handed

$$3 \times 5 = 15$$

Complete the Venn diagram.

[3 marks]

5 (b) A left-handed student is chosen at random.

Work out the probability that the student wears glasses.

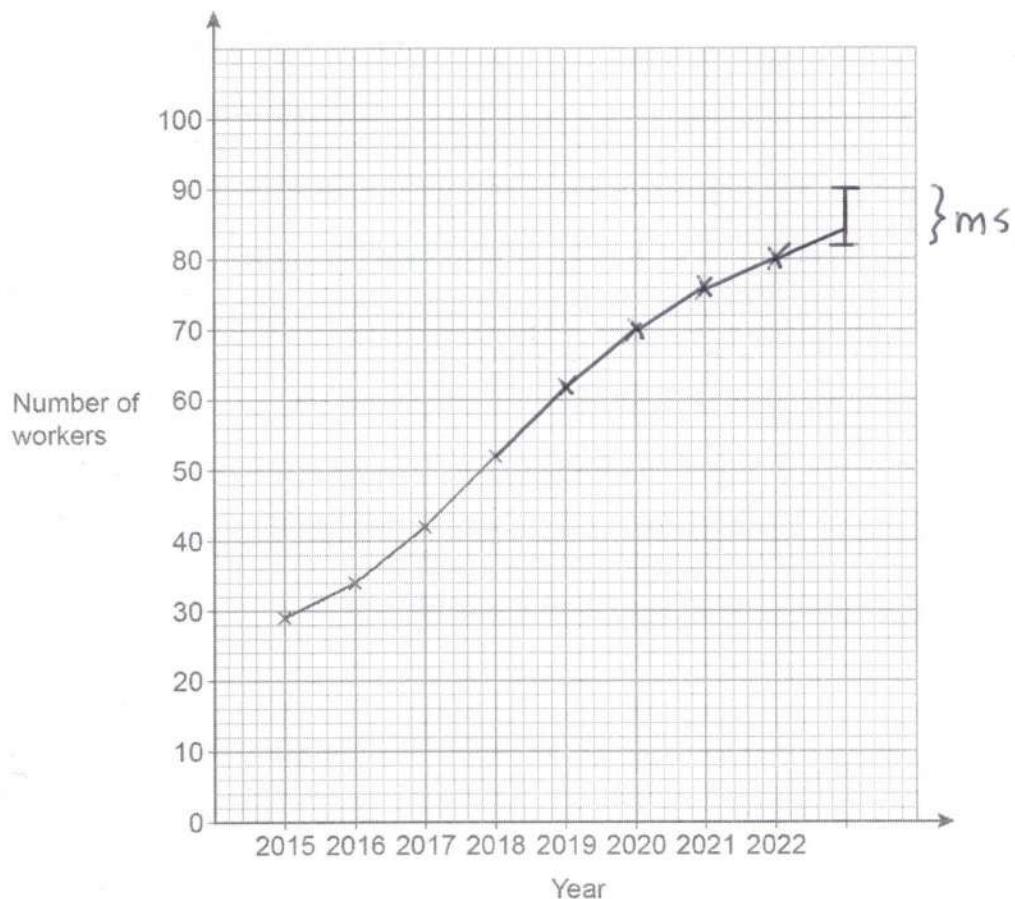
[1 mark]

$$\frac{7}{22}$$

Answer

0 4

IB/M/Jun24/8300/1H


6

The table shows the number of workers at a company in different years.

Year	2015	2016	2017	2018	2019	2020	2021	2022
Number of workers	29	34	42	52	62	70	76	80

A time-series graph is drawn to represent the data.

The first four points have been plotted.

6 (a) Complete the graph.

[2 marks]

6 (b) Estimate the number of workers at the company in 2023

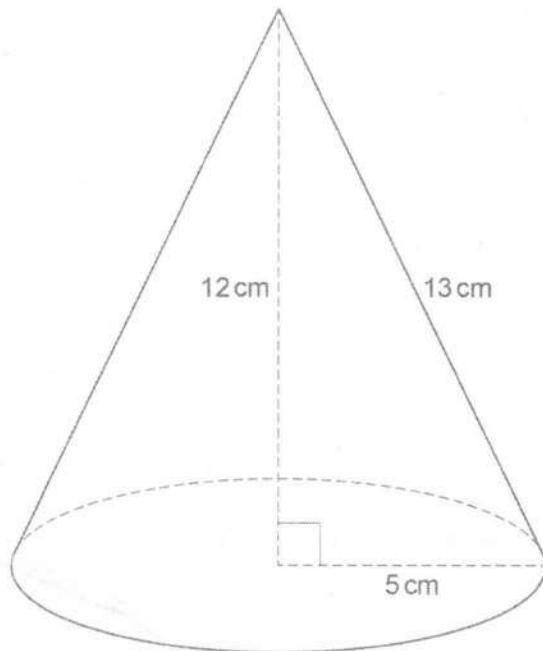
[1 mark]

Answer

ms: $82 \rightarrow 90$

7

Turn over ►



0 5

IB/M/Jun24/8300/1H

7

Here is a cone.

7 (a)

Curved surface area of a cone = $\pi r l$
where r is the radius and l is the slant height

Beth tries to work out the curved surface area in terms of π

Curved surface area of the cone = $\pi \times 5 \times 12$
= $60\pi \text{ cm}^2$

What mistake has she made?

She's used height (12) instead of
slant length (13)

[1 mark]

0 6

IB/M/Jun24/8300/1H

7 (b) Adam uses $\pi = 3$ to estimate the area of the **base** of the cone.

Work out his estimate.

$$\pi r^2 =$$

[2 marks]

$$\begin{aligned} &= 3 \times 5^2 \\ &= 3 \times 25 \end{aligned}$$

75

Answer

cm²

7 (c) Beth uses $\pi = 3.14$ to estimate the area of the **base** of the cone.

Is Beth's estimate more than or less than Adam's estimate?

Tick a box.

More than

Less than

Give a reason for your answer.

[1 mark]

3.14 > 3

Turn over for the next question

8 Solve $7x - 22 = 4x + 29$ Do not write
outside the
box

[3 marks]

$$3x - 22 = 29$$

$$3x = 51$$

$$x = 51 \div 3$$

$$x = 17$$

9 In a housethe floor area of the living room is 26 m^2 the floor area of the kitchen is 16.4 m^2

Express the area of the living room as a fraction of the area of the kitchen.

Give your answer in its simplest form.

[3 marks]

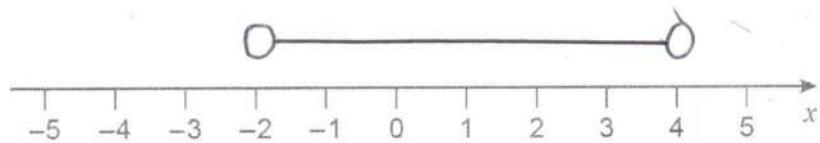
$$\frac{26}{16.4} = \frac{260}{164}$$

$$= \frac{96}{164}$$

$$= \frac{48}{82}$$

$$\frac{24}{41}$$

Answer


0 8

IB/M/Jun24/8300/1H

10 (a) Represent $-2 < x < 4$ on the number line.

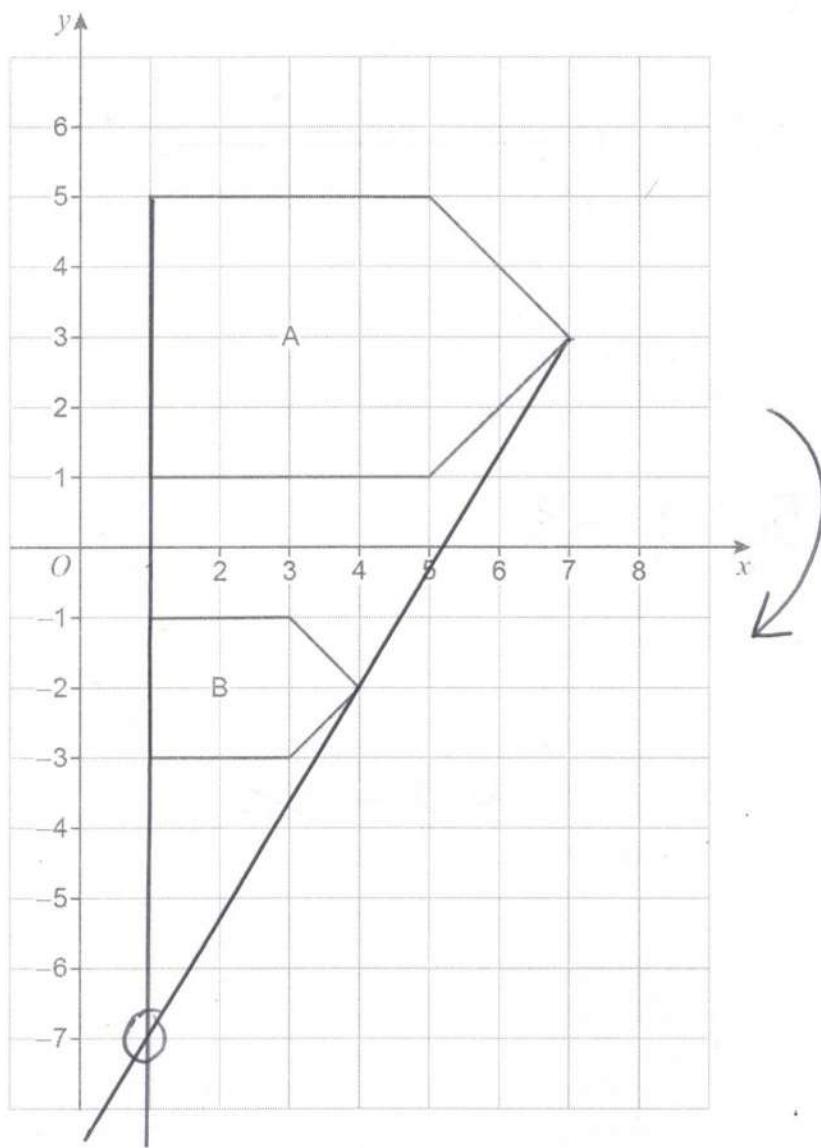
[1 mark]

Do not write outside the box

10 (b) Solve $5y + 14 \geq 11$

[2 marks]

$$5y \geq -3$$


$$y \geq -\frac{3}{5}$$

Answer

Turn over for the next question

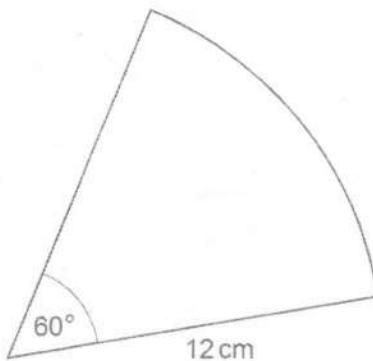
11

Describe fully the **single** transformation that maps shape A to shape B.

[3 marks]

Enlargement, scale factor = $\frac{1}{2}$

centre $(1, -7)$



1 0

IB/M/Jun24/8300/1H

12 A sector has radius 12 cm and angle 60°

Do not write outside the box

Not drawn accurately

Work out the length of the arc.

Give your answer in terms of π

$$(2 \times \pi \times 12) \times \left(\frac{60}{360}\right)$$

[3 marks]

$$24\pi \times \frac{1}{6}$$

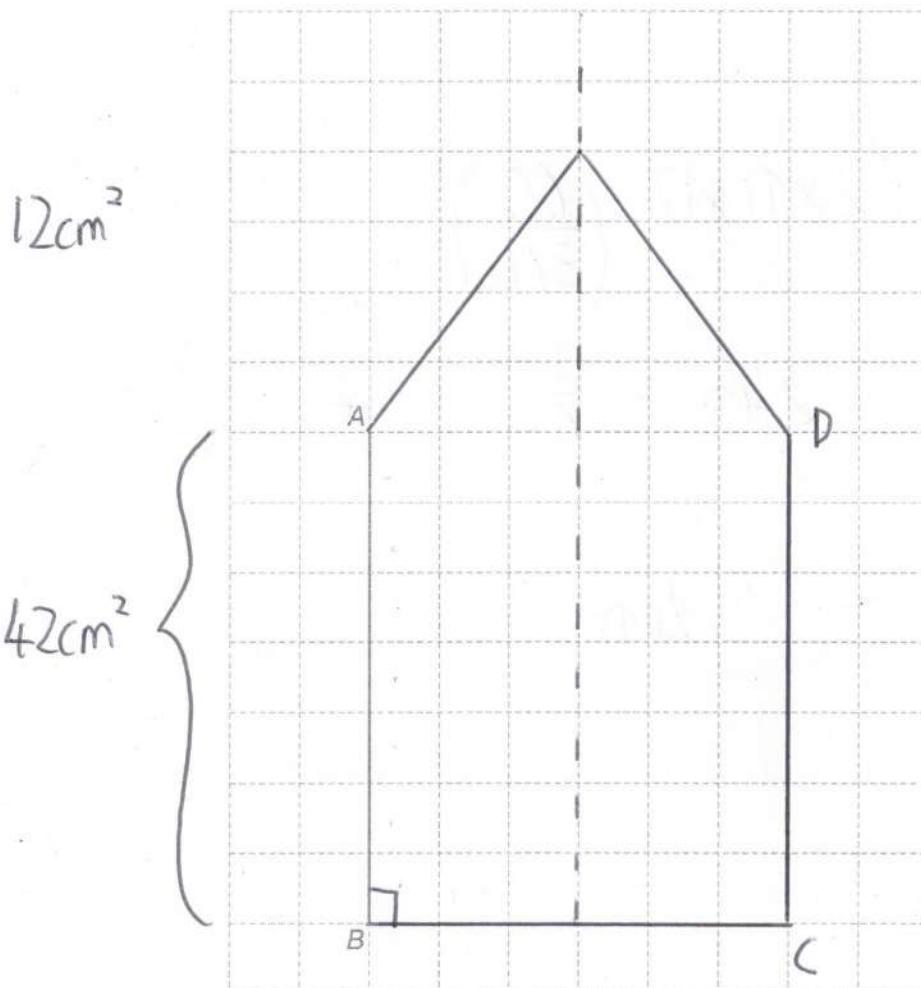
Answer 4π cm

Turn over for the next question

6

Turn over ►

1 1


IB/M/Jun24/8300/1H

13 $ABCDE$ is a pentagon with $AB = 7\text{ cm}$

- $BC = 6\text{ cm}$ ✓
- AB and BC are perpendicular. ✓
- AB and DC are equal **and** parallel. ✓
- Area of the pentagon = 54 cm^2
- The pentagon has exactly one line of symmetry.

Complete a **labelled** drawing of the pentagon.

[4 marks]

1 2

IB/M/Jun24/8300/1H

14

4 chocolate bars and 3 packets of mints cost £4.70

5 chocolate bars and 1 packet of mints cost £4.50

Work out the cost of a chocolate bar and the cost of a packet of mints.

[4 marks]

$$4c + 3m = 4.70 \quad ①$$

$$5c + m = 4.50 \quad ②$$

$$\begin{array}{r} ① = 4c + 3m = 4.7 \\ ② \times 3 = 15c + 3m = 13.5 \\ \hline 11c = 8.8 \\ c = 0.8 \end{array}$$

$$②: 4.00 + m = 4.5$$

chocolate bar

£ 0.80

packet of mints

£ 0.50

Turn over for the next question

15 (a) Between which two consecutive integers does the square root of 210 lie?

$$14^2 = 196 \quad 15^2 = 225$$

[1 mark]

Answer 14 and 15

15 (b) Here are two calculations, A and B.

A

$$1.92^7 + 6.9^3$$

B

$$5 \times \sqrt[3]{1000 \ 350}$$

Use approximations to show that answer to A < answer to B

$$\begin{aligned} A &= 2^7 + 7^3 \\ &= 128 + 343 \\ &= 471 \end{aligned}$$

$$\begin{aligned} B &= 5 \times \sqrt[3]{1,000,000} \\ &= 5 \times 100 \\ &= 500 \end{aligned}$$

$$471 < 500$$

[3 marks]

1 4

16

The table shows information about the ages of members of two clubs.

	Median age (years)	Interquartile range of ages (years)
Swimming club	21.2	7.3
Cycling club	29.7	4.6

Compare the average age and consistency of ages for the members of the two clubs.

[2 marks]

Average

The average age of
cyclists are higher

Consistency

The age of cyclists is less
varied

Turn over for the next question

6

Turn over ►

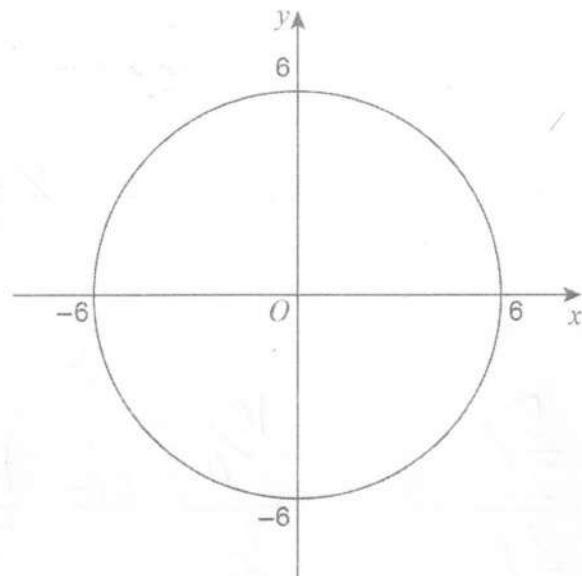
1 5

IB/M/Jun24/8300/1H

17 Rearrange $y = \frac{3x+7}{x}$ to make x the subject.

[4 marks]

$$yx = 3x + 7$$


$$yx - 3x = 7$$

$$x(y-3) = 7$$

Answer $x = \frac{7}{y-3}$

18

A circle has centre O and passes through $(0, 6)$ Do not write
outside the
box

Write down the equation of the circle.

[1 mark]

Answer $x^2 + y^2 = 6^2$

Turn over for the next question

5

Turn over ►

1 7

IB/M/Jun24/8300/1H

19

 A , B and C are numbers.Here is some information about B and C .

B	$\frac{7}{4}$ of A
C	A increased by 150%

$$= X \frac{5}{2}$$

Work out C as a fraction of B .

[4 marks]

$$\frac{C}{B} = \frac{\frac{5}{2}A}{\frac{7}{4}A} = \frac{\frac{10}{4}}{\frac{7}{4}} = \frac{10}{7}$$

Answer $\frac{10}{7}$ or $1\frac{3}{7}$

20 $5x^3 + ax^2 + bx + c \equiv kx^3 + (2 - k)x^2 + (a^2 - 1)x + \frac{b}{2}$

Work out the values of a , b and c .

[3 marks]

$\textcircled{x^3}$ $5 = k$

$\textcircled{x^2}$ $a = 2 - k = 2 - 5 = -3$

\textcircled{x} $b = a^2 - 1 = 9 - 1 = 8$

$\textcircled{\text{constants}}$ $c = \frac{b}{2} = \frac{8}{2} = 4$

$a = -3$ $b = 8$ $c = 4$

Turn over for the next question

21

Prove algebraically that $1.018 = \frac{56}{55} = 1\frac{1}{55}$

[3 marks]

Let $x = 0.018$

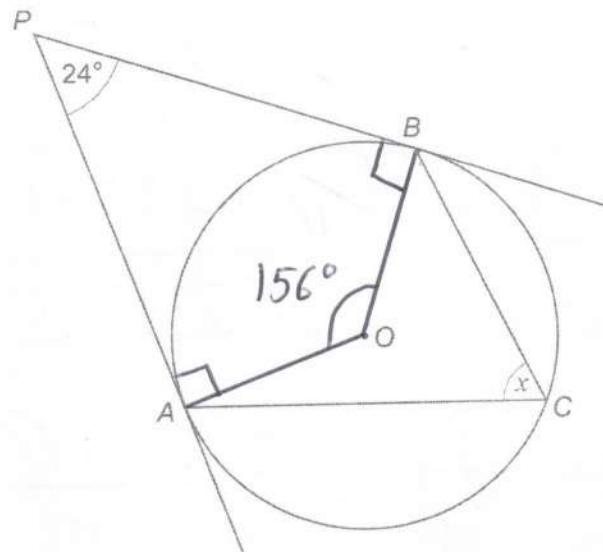
$$\begin{aligned}10x &= 0.18 \\1000x &= 18.18 \\ \hline 990x &= 18\end{aligned}$$

$$x = \frac{18}{990} = \frac{9}{495} = \frac{3}{165} = \frac{1}{55}$$

$$\text{so } 1.018 = 1\frac{1}{55}$$

2 0

IB/M/Jun24/8300/1H


22

A, B and C are points on a circle, centre O.

AP and BP are tangents to the circle.

Do not write outside the box.

Not drawn accurately

Work out the size of angle x .

[3 marks]

$$360 - 180 - 24 = 156$$

$$x = 156 \div 2$$

78

Answer

6

Turn over ►

2 1

IB/M/Jun24/8300/1H

23 (a) The first three terms of a geometric progression are $\frac{\sqrt{5}}{2}, \frac{5}{4}, \frac{5\sqrt{5}}{8}, \left(x \frac{\sqrt{5}}{2} \right)$

Work out the next term.

[1 mark]

Answer

$$\frac{25}{16}$$

23 (b) The n th term of a sequence is $(2 + \sqrt{3})^n$

Show that the third term is $26 + 15\sqrt{3}$

$$\begin{aligned} (2 + \sqrt{3})^2 &= (2 + \sqrt{3})(2 + \sqrt{3}) \\ &= 4 + 2\sqrt{3} + 2\sqrt{3} + 3 \\ &= 7 + 4\sqrt{3} \end{aligned}$$

[3 marks]

$$\begin{aligned} (7 + 4\sqrt{3})(2 + \sqrt{3}) &= 14 + 7\sqrt{3} + 8\sqrt{3} + 12 \\ &= 14 + 12 + 7\sqrt{3} + 8\sqrt{3} \\ &= 26 + 15\sqrt{3} \end{aligned}$$

2 2

IB/M/Jun24/8300/1H

24 (a) $9k+7$ and $2k^2+3$ are consecutive integers.
 $9k+7$ is the smaller integer.

Work out the value of the **next** consecutive integer.

[5 marks]

$$2K^2 + 3 - (9K + 7) = 1$$

$$2K^2 - 9K - 5 = 0$$

$$(2K+1)(K-5) = 0$$

$$K = -\frac{1}{2} \quad K = 5$$

reject

$$9K+7 = 45+7 = 52$$

53 }
 54 }

Answer

54

24 (b) x is a square number.

Show that the **next** square number is $x + 2\sqrt{x} + 1$

[2 marks]

$$\sqrt{x} = \text{integer}$$

$$\sqrt{x} + 1 = \text{next integer}$$

$$(\sqrt{x} + 1)^2 = (\sqrt{x} + 1)(\sqrt{x} + 1)$$

$$\begin{aligned} &= x + \sqrt{x} + \sqrt{x} + 1 \\ &= x + 2\sqrt{x} + 1 \end{aligned}$$

11

Turn over ►

2 3

IB/M/Jun24/8300/1H

25 Show that the value of $6 \sin 30^\circ + 2 \cos 30^\circ \times 4 \tan 30^\circ$ is an integer.

[4 marks]

$$= \left(6 \times \frac{1}{2}\right) + \left(2 \times \frac{\sqrt{3}}{2}\right) \times \left(4 \times \frac{\sqrt{3}}{3}\right)$$

$$= 3 + \sqrt{3} \times \frac{4\sqrt{3}}{3}$$

$$= 3 + \frac{4 \times 3}{3}$$

$$= 3 + 4$$

$$= \underline{\underline{7}}$$

END OF QUESTIONS

