

Apart from questions 6, 8, 13b and 24 (where the mark scheme states otherwise) the correct answer, unless clearly obtained from an incorrect method, should be taken to imply a correct method.

Question	Working	Answer	Mark	Notes
1	$\frac{5}{3} + \frac{11}{4}$ $\frac{20}{12} + \frac{33}{12}$ $\frac{53}{12} = 4\frac{5}{12}$ <p>Alternative method</p> $\frac{2}{3} + \frac{3}{4} = \frac{8}{12} + \frac{9}{12}$ $\frac{17}{12} = 1\frac{5}{12}$ $1\frac{5}{12} + 1 + 2 = 4\frac{5}{12}$	Shown	3	M1 converts to improper fractions M1 converts to fractions with the same common denominator A1 Dep on M2 M1 correct method to add proper fractions M1 A1 Dep on M2

Question	Working	Answer	Mark	Notes
2	$\frac{3}{4} \times 60 \quad (= 45) \text{ or } \frac{1}{4} \times 60 \quad (= 15) \text{ OR } \frac{3}{4} \times \frac{3}{5} \left(= \frac{9}{20} \right)$ $\frac{3}{5} \times "45" \quad (= 27) \text{ or } \frac{4}{5} \times "15" \quad (= 12) \text{ OR }$ $\frac{1}{4} \times \frac{4}{5} \left(= \frac{4}{20} \right)$ $\frac{"27" + "12"}{60} \text{ OR } \frac{9}{20} + \frac{4}{20}$	$\frac{13}{20}$	4	M1 M1 M1 For a complete method A1 oe
3	$14^2 - 10^2 \quad (= 96)$ $"96" + 5^2 \quad (= 121)$ $\sqrt{"121"}$	11	4	M1 M1 M1 A1
4	$(a =) 40 - 14 \quad (= 26)$ e.g. $\frac{"26" + b}{2} = 30 \text{ or } 30 + (30 - "26")$	$\frac{26}{34}$	3	M1 Method to find a M1 Method to find b A1

Question	Working	Answer	Mark	Notes	
5	$30.5 \div 8 (= 3.8125)$ OR $60 \div 8 (= 7.5)$ $"3.8125" \times 60$ OR $30.5 \times "7.5"$	228.75	3	M1 M1	M2 for $30.5 \div \frac{8}{60}$ oe A1 accept 229, 228.8
6	$3x + 10 = x + 52$ $3x - x = 52 - 10$ or $2x = 42$ or $x = 21$ $y = 180 - 2 \times ("21" + 52)$ or $y = 180 - 2 \times (3 \times "21" + 10)$ or $y = 180 - ("21" + 52) - (3 \times "21" + 10)$	34	4	M1 M1 M1	for equating the expressions for angle P and angle Q for isolating the terms in x for a complete method A1 dep on M2
7	eg $\frac{187}{147}$ or $\frac{147}{187}$ or $\frac{90}{187}$ or $\frac{187}{90}$ eg $90 \div \frac{187}{147}$ or $90 \times \frac{147}{187}$ or $147 \times \frac{90}{187}$ or $147 \div \frac{187}{90}$	71	3	M1 M1 A1	for an appropriate scale factor, candidates may work in either cm or m for a complete method, candidates may work in either cm or m A1 70.7 – 71

Question	Working	Answer	Mark	Notes
10	$\pi \times \left(\frac{12}{2}\right)^2 (=113\ldots)$ $\text{or } \pi \times \left(\frac{12}{2} - 2\right)^2 (=50.2\ldots)$ $\text{or } \pi \times \left(\frac{12}{2} - 2\right)^2 \div 2 (=25.1\ldots)$ $\text{eg } (\pi \times 6^2 - \pi \times 4^2) \div 2 \text{ oe}$	10 π	3	M1 M1 for a complete method A1

Question	Working	Answer	Mark	Notes
11	$12 \times 5.5 (= 66)$ $\begin{array}{r} "66"+18 \\ \hline 20 \end{array}$	4.2	3	M1 M1 for a complete method A1
12 (a)		$\frac{n}{2n-1}$ Proved	2	M1 for $2n \pm k$ oe as the denominator
(b)	$(2n-1)^2 = 4n^2 - 4n + 1$ $4(n^2 - n) + 1 \text{ or } \frac{4n^2 - 4n + 1}{4} = n^2 - n + \frac{1}{4}$		3	A1 oe M1 or $(2n+1)^2 = 4n^2 + 4n + 1$ ft on $2n \pm k$ (k non zero) M1 or $4(n^2 + n) + 1 \text{ or } \frac{4n^2 + 4n + 1}{4} = n^2 + n + \frac{1}{4}$ A1 Conclusion

Question	Working	Answer	Mark	Notes
13 (a)		$3x^2 - 2x - 8$	2	B2 (B1 for at least 1 correct non zero term)
(b)	$“3x^2 - 2x - 8” = 0$ $(3x + 4)(x - 2) (=0)$ or $x = \frac{2 \pm \sqrt{100}}{2 \times 3}$ or $x = \frac{2 \pm \sqrt{(-2)^2 - 4 \times 3 \times (-8)}}{2 \times 3}$	$-\frac{4}{3}, 2$	3	M1 Dep on at least B1, ft on M marks only dep on $\frac{dy}{dx}$ being a 3 term quadratic M1
(c)	$At x = 2, y = 2^3 - 2^2 - 8 \times 2 + 12 (=0)$ or at $x = -\frac{4}{3}$, $y = \left(-\frac{4}{3}\right)^3 - \left(-\frac{4}{3}\right)^2 - 8 \times \left(-\frac{4}{3}\right) + 12$ $\left(= \frac{500}{27}\right)$	Shown	2	A1 (dep 2nd M1) M1 Substitutes at least one of $-\frac{4}{3}$ or 2 or their answer from (b) into $(y =)x^3 - x^2 - 8x + 12$ A1 must show that (2,0) is a turning point on the curve and give concluding statement

Question	Working	Answer	Mark	Notes	
14 (a) (b) (c)		97	1	B1	96 - 98
		Correct graph	2	M1	for at least 4 points plotted correctly at end of interval or for all 6 points plotted consistently within each interval at the correct height
		14	2	A1 M1	accept curve or line segments accept curve that is not joined to (0, 0) A line drawn at CF = 60 to meet at least one curve or sight of "55" or "69"

Question	Working	Answer	Mark	Notes	
15 (a)		$81x^8y^{20}$	2	B2	(B1 two terms correct in a product of 3 terms)
(b)	$4n(n^2 + 2n - 15)$ or $(4n^2 - 12n)(n + 5)$ or $(4n^2 + 20n)(n - 3)$	$4n^3 + 8n^2 - 60n$	2	M1	For a correct partial expansion (may be unsimplified e.g $4n(n^2 + 5n - 3n - 15)$)
(c)		$(2c - 3d)(2c + 3d)$	1	A1	
(d)	$\frac{(4-x)(3-x)}{x(4-x)}$ or $\frac{(x-4)(x-3)}{x(4-x)}$	$\frac{3-x}{x}$	3	M1	for either numerator or denominator factorised correctly
				M1	for both numerator and denominator factorised correctly
				A1	oe

Question	Working	Answer	Mark	Notes
16 (a)	$\frac{2}{12} \times \frac{1}{11}$	$\frac{1}{66}$	2	M1
(b)	<p>Any two of $\frac{7}{12} \times \frac{3}{11} \left(= \frac{21}{132} \right)$ or $\frac{7}{12} \times \frac{2}{11} \left(= \frac{14}{132} \right)$ or $\frac{3}{12} \times \frac{2}{11} \left(= \frac{6}{132} \right)$</p> $2 \times \frac{7}{12} \times \frac{3}{11} + 2 \times \frac{7}{12} \times \frac{2}{11} + 2 \times \frac{3}{12} \times \frac{2}{11}$ <p>Alternative method</p> $\frac{7}{12} \times \frac{6}{11} \left(= \frac{42}{132} \right) \text{ and } \frac{3}{12} \times \frac{2}{11} \left(= \frac{6}{132} \right)$ $1 - " \frac{2}{12} \times \frac{1}{11} " - \frac{7}{12} \times \frac{6}{11} - \frac{3}{12} \times \frac{2}{11}$	$\frac{41}{66}$	3	<p>A1</p> <p>M1 for any two correct</p> <p>M1 for a complete method</p> <p>A1 oe</p> <p>M1 both correct</p> <p>M1 for a complete method</p> <p>A1</p> <p>SC B2 for an answer of $\frac{41}{72}$ oe</p>

Question	Working	Answer	Mark	Notes
17 (a)	$2\pi r^2 + 2\pi r \times 2r$	$6r^2$	2	M1
(b)	<p>S.A. $6\pi r^2 : 4\pi r^2 = 3 : 2$</p> $V_c : V_s = 2\pi r^3 : \frac{4}{3} \pi r^3$ $= 3 \times 2 : 4 = 3 : 2$	<p>Shown</p>	3	<p>A1</p> <p>M1</p> <p>ft their answer from (a), must be in terms of r. Ratios could be seen as fractions throughout eg $\frac{3}{2}$</p> <p>M1</p> <p>A1</p> <p>oe eg ratios could be $\frac{3}{2} : 1$</p>

Question	Working		Answer	Mark	Notes	
18	$\frac{\sqrt{8}}{\sqrt{8}-2} \times \frac{\sqrt{8}+2}{\sqrt{8}+2}$ $\frac{\sqrt{8}(\sqrt{8}+2)}{8-4} = \frac{8+2\sqrt{8}}{4} = \frac{8+4\sqrt{2}}{4}$ $= 2 + \sqrt{2}$		Shown	3	M1 or $\frac{2\sqrt{2}}{2\sqrt{2}-2}$ or $\frac{\sqrt{2}}{\sqrt{2}-1}$	
19	Angle $BCE = 73^\circ$ Angle $DEB = 73^\circ$ and Angle $DCB = 180 - 73 (= 107^\circ)$ Angle $DCE = 34^\circ$ eg <u>Alternate segment</u> theorem Opposite angles of a <u>cyclic quadrilateral</u> sum to 180° <u>Alternate angles</u> are equal Angles in the <u>Same segment</u> are equal <u>Angles</u> in a <u>triangle</u> sum to 180°	Angle $BDE = 73^\circ$ Angle $DEB = 73^\circ$ and Angle $DBE = 180 - 73 \times 2 (= 34^\circ)$	34	5	M1 A1 B2	angles may be written on the diagram for a full set of reasons relevant to their method (B1 for at least one relevant circle theorem)

Question	Working	Answer	Mark	Notes
20	<p>Let N be the midpoint of BC</p> <p>Let sides of cube have length $2a$ cm</p> $AN^2 = 4a^2 + a^2 (= 5a^2) \text{ or } AM^2 = 4a^2 + a^2 + 4a^2 (= 9a^2)$ <p>eg $\tan MAN = \frac{2a}{\sqrt{5a^2}}$ or $\sin MAN = \frac{2a}{\sqrt{9a^2}}$</p>	41.8	4	<p>B1 for recognising that required angle is MAN (could be marked on a diagram)</p> <p>M1 any $a > 0$ (a could be a number or a letter)</p> <p>M1 correct trig statement for angle MAN, any $a > 0$ (a could be a number or a letter)</p> <p>A1 $41.8 - 41.82$</p>
21	$x^2 = 5^2 + y^2 - 2 \times 5 \times y \cos 60^\circ$ $(y-1)^2 = 5^2 + y^2 - 5y \text{ or } x^2 = 5^2 + (x+1)^2 - 5x - 5$ $y^2 - 2y + 1 = 25 + y^2 - 5y \text{ or}$ $x^2 = 5^2 + x^2 + 2x + 1 - 5x - 5$ $5y - 2y = 25 - 1 \text{ or } y = 8 \text{ or } 3x = 21 \text{ or } x = 7$	20	5	<p>M1 recognising need for the cosine rule</p> <p>M1</p> <p>M1 for expansion of $(y-1)^2$ or $(x+1)^2$ in a correct equation</p> <p>M1 for correct linear equation with correct isolation of terms</p> <p>A1</p>

Question	Working	Answer	Mark	Notes
22	<p>eg $\overrightarrow{EX} = \overrightarrow{ED} + \overrightarrow{DC} + \overrightarrow{CX}$ or $\overrightarrow{EX} = \overrightarrow{EF} + \overrightarrow{FA} + \overrightarrow{AX}$</p> <p>$\overrightarrow{DC} = -\mathbf{b} + \mathbf{a}$ or $\overrightarrow{CX} = -\mathbf{b} + \mathbf{a}$ or $\overrightarrow{FA} = -\mathbf{b} + \mathbf{a}$</p> <p>$\overrightarrow{EX} = \mathbf{a} + 2(-\mathbf{b} + \mathbf{a})$</p>	$3\mathbf{a} - 2\mathbf{b}$	4	<p>M1 a correct statement for \overrightarrow{EX}</p> <p>M1</p> <p>M1 for a complete method which gives a correct but unsimplified expression for \overrightarrow{EX}</p> <p>A1</p>

