

Write your name here

Surname _____ Other names _____

**Pearson Edexcel
International GCSE**

Mathematics A

Level 1/2
Paper 1H

Centre Number _____ Candidate Number _____

Thursday 24 May 2018 – Morning
Time: 2 hours

Paper Reference
4MA1/1H

You must have:
Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Total Marks _____

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
– there may be more space than you need.
- Calculators may be used.
- You must **NOT** write anything on the formulae page.
Anything you write on the formulae page will gain **NO** credit.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
– use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Turn over ►

P 5 4 6 9 4 A 0 1 2 4

DO NOT WRITE IN THIS AREA

Answer all TWENTY questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

1 The table shows information about the weights, in kg, of 40 parcels.

Weight of parcel (p kg)	Frequency
$0 < p \leq 1$	19
$1 < p \leq 2$	12
$2 < p \leq 3$	5
$3 < p \leq 4$	2
$4 < p \leq 5$	2

MP	9.5
X 0.5	18
X 1.5	12.5
X 2.5	7
X 3.5	9
X 4.5	

(a) Write down the modal class.

0 < p ≤ 1

(1)

(b) Work out an estimate for the mean weight of the parcels.

$$\frac{56}{40}$$

1.4

kg

(4)

(Total for Question 1 is 5 marks)

P 5 4 6 9 4 A 0 3 2 4

2 There are some people in a cinema.

$\frac{3}{5}$ of the people in the cinema are children.

For the children in the cinema,

$$\text{number of girls : number of boys} = 2 : 7$$

There are 170 girls in the cinema.

Work out the number of adults in the cinema.

$$\begin{array}{r} 9 \quad B \\ 2 \quad 7 \\ \hline 170 \quad 595 \\ + \\ 765 \text{ children} \end{array}$$

$$\begin{array}{l} \frac{3}{5} \text{ of people} = 765 \\ \text{people} = 1275 \end{array}$$

$$\frac{2}{5} \times 1275$$

$$510$$

(Total for Question 2 is 5 marks)

3 (a) Simplify $y^5 \times y^9$

$$5+9$$

$$y^{14}$$

(1)

(b) Simplify $(2m^3)^4$

$$2^4 = 16$$

$$3 \times 4 = 12$$

$$16m^{12}$$

(2)

(c) Solve $5(x+3) = 3x - 4$

Show clear algebraic working.

$$5x + 15 = 3x - 4$$

$$2x = -19$$

$$x = -\frac{19}{2}$$

or

$$-9.5$$

$$x =$$

(3)

(d) (i) Factorise $x^2 + 2x - 24$

$$(x+6)(x-4)$$

(2)

(ii) Hence, solve $x^2 + 2x - 24 = 0$


$$x = 4, x = -6$$

(1)

(Total for Question 3 is 9 marks)

4 Here is a Venn diagram.

(a) Write down the numbers that are in the set

(i) A

1, 2, 3, 4, 6, 12

(ii) $B \cup C$

1, 3, 5, 7, 9, 10, 11
(2)

Brian writes down the statement $A \cap C = \emptyset$

(b) Is Brian's statement correct?

You must give a reason for your answer.

Yes, A and C have no common numbers

(1)

One of the numbers in the Venn diagram is picked at random.

(c) Find the probability that this number is in set C'

$\frac{10}{12}$ or $\frac{5}{6}$

(2)

(Total for Question 4 is 5 marks)

5 (a) Write 8×10^4 as an ordinary number.

80 000

(1)

(b) Work out $(3.5 \times 10^5) \div (7 \times 10^8)$
Give your answer in standard form.

0.5×10^{-3}

5×10^{-4}

(2)

(Total for Question 5 is 3 marks)

6

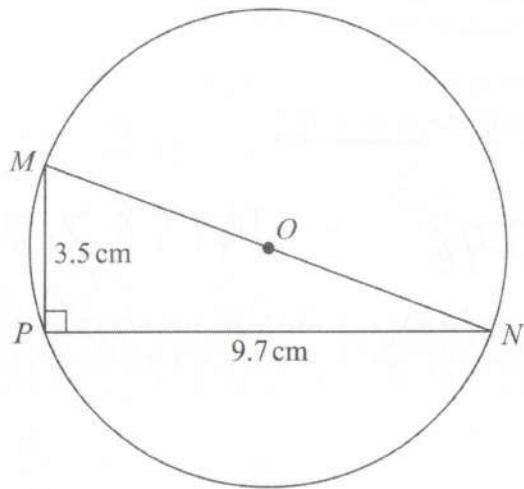


Diagram **NOT**
accurately drawn

M, N and P are points on a circle, centre O .
 MON is a diameter of the circle.

$$MP = 3.5 \text{ cm}$$

$$PN = 9.7 \text{ cm}$$

$$\text{Angle } MPN = 90^\circ$$

Work out the circumference of the circle.

Give your answer correct to 3 significant figures.

$$MN = \sqrt{3.5^2 + 9.7^2} = 10.312\dots = \text{diameter}$$

$$C = \pi \times d$$

$$= 32.3965\dots$$

32.4

cm

(Total for Question 6 is 4 marks)

7 Chao bought a boat for HK\$160 000
The value of the boat depreciates by 4% each year.
(a) Work out the value of the boat at the end of 3 years.
Give your answer correct to the nearest HK\$.

$$160000 \times 0.96^3 = 141557.76$$

HK\$ 141,558
(3)

Jalina gets a salary increase of 5%
Her salary after the increase is HK\$252 000

(b) Work out Jalina's salary before the increase.

$$? \times 1.05 = 252000$$

$$252000 \div 1.05 = 240000$$

HK\$ 240000
(3)

(Total for Question 7 is 6 marks)

8 $A = 3^5 \times 5 \times 7^3$ $A = 3,3,3,3,5,7,7,7$
 $B = 2^3 \times 3 \times 7^4$ $B = 2,2,2,3,7,7,7,7$

(a) (i) Find the Highest Common Factor (HCF) of A and B .

$$3 \times 7 \times 7 \times 7$$

$$= 1029$$

(ii) Find the Lowest Common Multiple (LCM) of A and B .

$$= 1029 \times 3^4 \times 5 \times 2^3 \times 7^3$$

$$= 23,337,720$$

$$A = 3^5 \times 5 \times 7^3$$

$$B = 2^3 \times 3 \times 7^4$$

$$C = 2^p \times 5^q \times 7^r$$

Given that

the HCF of B and C is $2^3 \times 7$

the LCM of A and C is $2^4 \times 3^5 \times 5^2 \times 7^3$

(b) find the value of p , the value of q and the value of r .

B/C , HCF, compare $2^3 \rightarrow 2^p$ and $\underline{\underline{7^r}} \rightarrow \underline{\underline{7^1}}$

LCM, compare $\underline{\underline{2^4}} \rightarrow \underline{\underline{2^p}}$
 $\underline{\underline{5^2}} \rightarrow \underline{\underline{5^q}}$

$$p = 4$$

$$q = 2$$

$$r = 1$$

(2)

(Total for Question 8 is 4 marks)

9 The diagram shows a right-angled triangle.

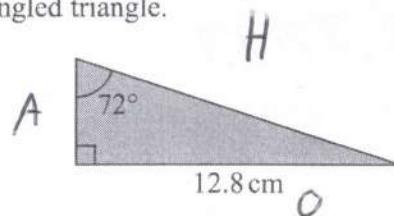


Diagram NOT
accurately drawn

Five of these triangles are put together to make a shape.

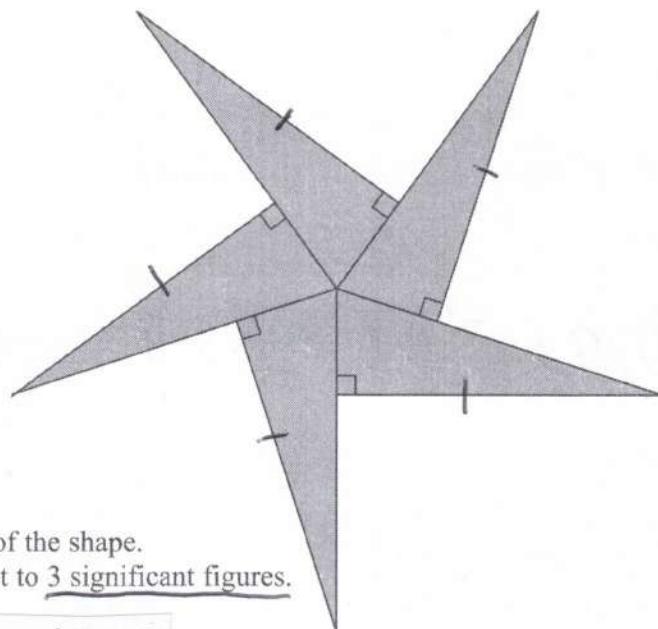


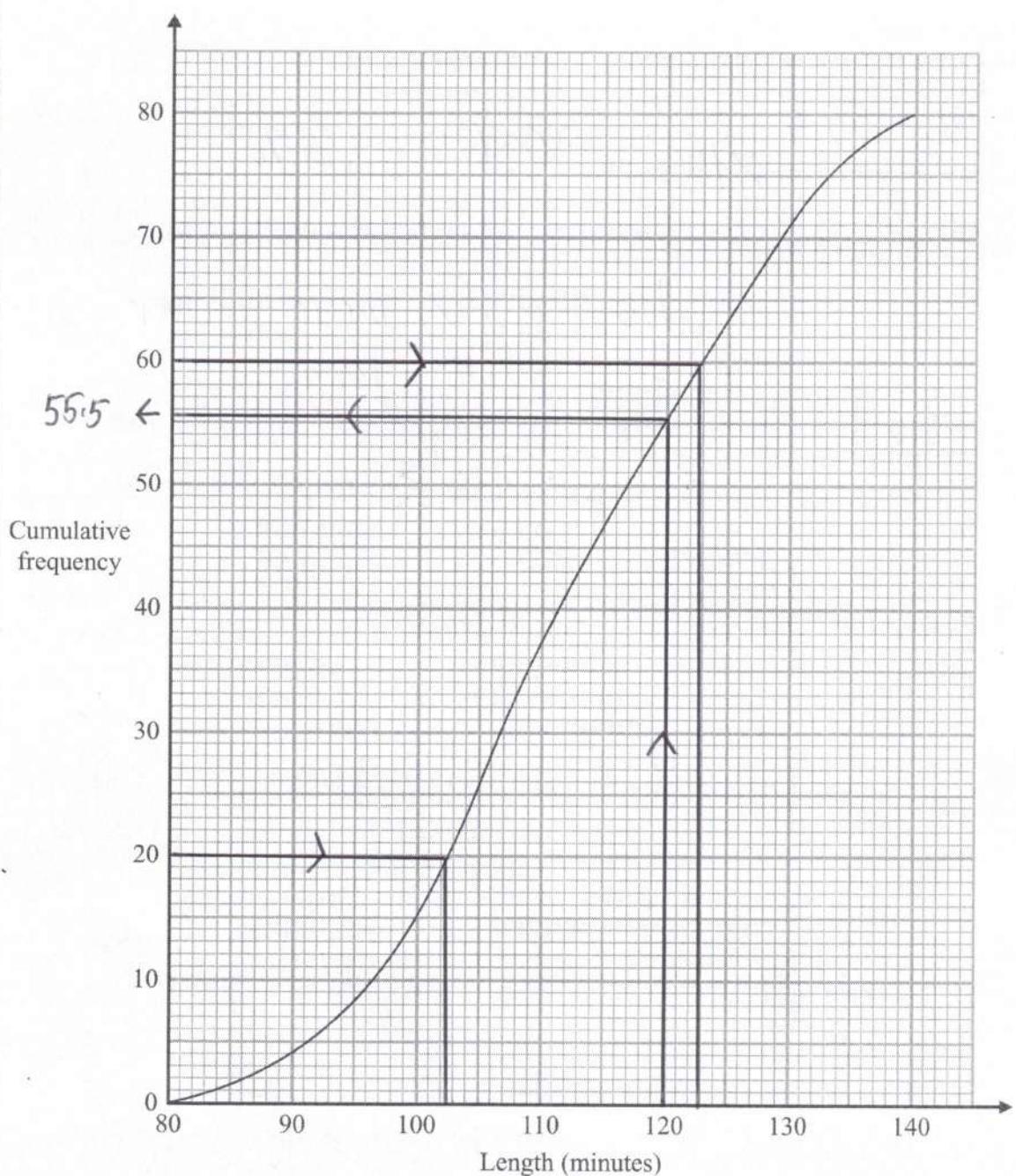
Diagram NOT
accurately drawn

Calculate the perimeter of the shape.

Give your answer correct to 3 significant figures.

$$S^o(H) \quad H = \frac{12.8}{\sin 72} = 13.458 \dots \quad \left. \begin{array}{l} \\ \end{array} \right\} -$$

$$T^o(A) \quad A = \frac{12.8}{\tan 72} = 4.1589 \dots \quad \left. \begin{array}{l} \\ \end{array} \right\} = 9.2990 \dots$$


$$\begin{aligned} \text{Perimeter} &= (5 \times 12.8) + (5 \times 9.299) \\ &= 110.495 \dots \end{aligned}$$

110
cm

(Total for Question 9 is 5 marks)

10 The cumulative frequency graph shows information about the length, in minutes, of each of 80 films.

(a) Use the graph to find an estimate for the interquartile range.

$$123 - 102.5$$

$$20.5$$

..... minutes

(2)

$[\text{ms: } 19 \rightarrow 21]$

Clare says,

"More than 35% of these films are over 120 minutes long."

(b) Is Clare correct?

Give a reason for your answer.

$$\frac{80 - 55.5}{80} \times 100 = 30.625 = 31\%$$

so No <35% were over
120m long.

(3)

(Total for Question 10 is 5 marks)

11 (a) Expand and simplify $(2x - 1)(x + 3)(x - 5)$

$$2x^2 + 5x - 3$$

$2x^3$	$+5x^2$	$-3x$	x
$-10x^2$	$-25x$	$+15$	-5

$$= 2x^3 - 5x^2 - 28x + 15$$

$a \ b \ c$

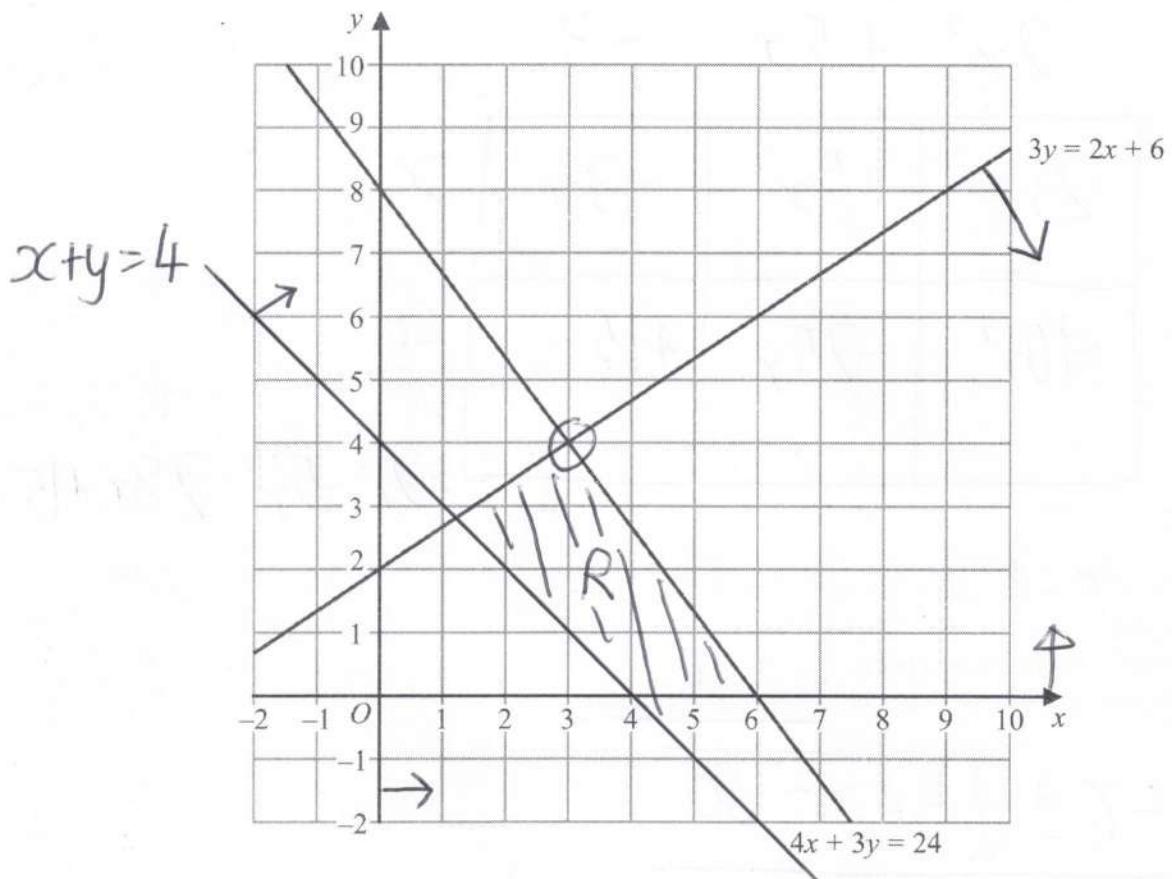
(3)

(b) Solve $3x^2 + 6x - 5 = 0$

Show your working clearly.

Give your solutions correct to 3 significant figures.

$$\frac{-6 \pm \sqrt{36 - 60}}{6}$$


$$= 0.633, -2.63$$

(3)

(Total for Question 11 is 6 marks)

12 The diagram shows two straight lines drawn on a grid.

(a) Write down the solution of the simultaneous equations

$$\begin{aligned} 3y &= 2x + 6 \\ 4x + 3y &= 24 \end{aligned}$$

$$3$$

$$x = \dots$$

$$4$$

$$y = \dots$$

(1)

(b) Show, by shading on the grid, the region defined by all five of the inequalities

$$\begin{array}{ll} x \geq 0 & y \geq 0 \\ \text{Label the region R.} & \end{array}$$

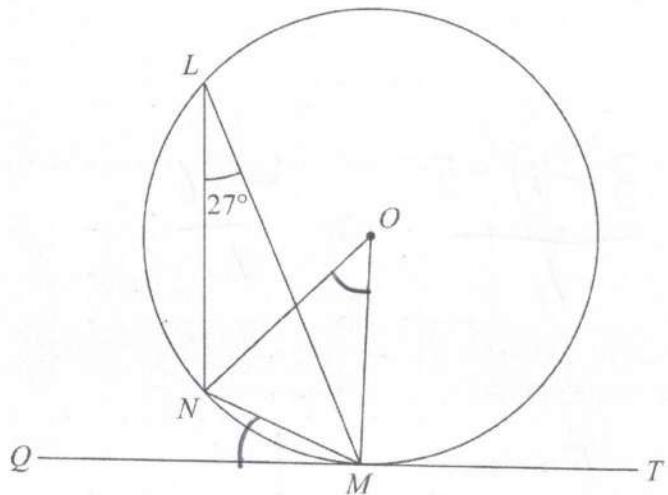
$$x + y \geq 4$$

$$3y \leq 2x + 6$$

$$4x + 3y \leq 24$$

$$0 \leq 0 + 6$$

$$0 + 0 \leq 24$$


first quadrant

(3)

(Total for Question 12 is 4 marks)

13

Diagram NOT
accurately drawn

L, M and N are points on a circle, centre O .
 QMT is the tangent to the circle at M .

(a) (i) Find the size of angle NOM .

54

(ii) Give a reason for your answer.

Angle at centre is twice angle at
circumference

(2)

(b) (i) Find the size of angle NMO .

27

(ii) Give a reason for your answer.

Alternate segment theorem

(2)

(Total for Question 13 is 4 marks)

14 The function f is such that

$$f(x) = \frac{3x - 5}{4}$$

(a) Find $f(-7)$

$$= \frac{3(-7) - 5}{4} = \frac{-26}{4} = -6.5$$

(1)

(b) Express the inverse function f^{-1} in the form $f^{-1}(x) = \dots$

$$y = \frac{3x - 5}{4}$$

$$4y = 3x - 5$$

$$4y + 5 = 3x$$

$$\frac{4y + 5}{3} = x$$

$$\frac{4x + 5}{3}$$

$$f^{-1}(x) = \dots$$

(2)

The function g is such that

$$g(x) = \sqrt{19 - x}$$

(c) Find $fg(3)$

$$g(3) = \sqrt{19 - 3} = \sqrt{16} = 4$$

$$f(4) = \frac{12 - 5}{4}$$

$$= \frac{7}{4} \text{ or } 1.75$$

(2)

(d) Which values of x cannot be included in any domain of g ?

$19 - x$ can't be < 0

so $x > 19$

(2)

(Total for Question 14 is 7 marks)

15 (a) Simplify fully $\left(\frac{256x^{20}}{y^8}\right)^{-\frac{1}{4}}$

$$\frac{(y^8)^{-\frac{1}{4}}}{256^{\frac{1}{4}} x (x^{20})^{\frac{1}{4}}} = \frac{y^2}{4x^5}$$

(2)

(b) Express $\frac{1}{9x^2 - 25} - \frac{1}{6x + 10}$ as a single fraction in its simplest form.

$$\frac{1}{(3x+5)(3x-5)} - \frac{1}{2(3x+5)}$$

$$= \frac{2 - 1(3x-5)}{2(3x+5)(3x-5)}$$

$$= \frac{2 - 3x + 5}{2(3x+5)(3x-5)} = \frac{7-3x}{2(3x+5)(3x-5)}$$

(3)

(Total for Question 15 is 5 marks)

16 A frustum is made by removing a small cone from a large cone.
The cones are mathematically similar.

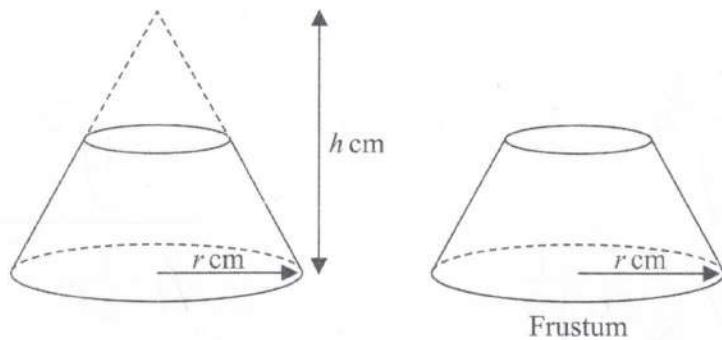
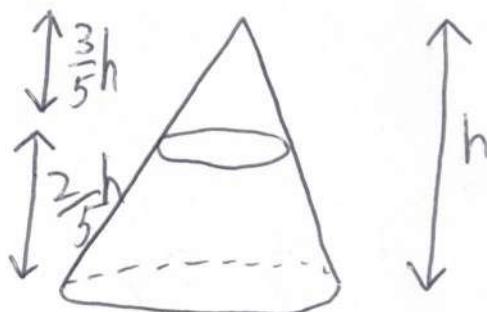


Diagram NOT
accurately drawn

The large cone has base radius r cm and height h cm.


Given that

$$\frac{\text{volume of frustum}}{\text{volume of large cone}} = \frac{98}{125}$$

find an expression, in terms of h , for the height of the frustum.

$$\frac{\text{Volume of small cone}}{\text{Vol. of large cone}} = \frac{27}{125}$$

$$\text{so linear scale factor} = \sqrt[3]{\frac{27}{125}} = \frac{3}{5}$$

so height of frustum

$$= \frac{2}{5}h \text{ cm}$$

(Total for Question 16 is 4 marks)

17 The diagram shows parallelogram ABCD.

$$\text{so } \vec{BC} = \vec{AD}$$

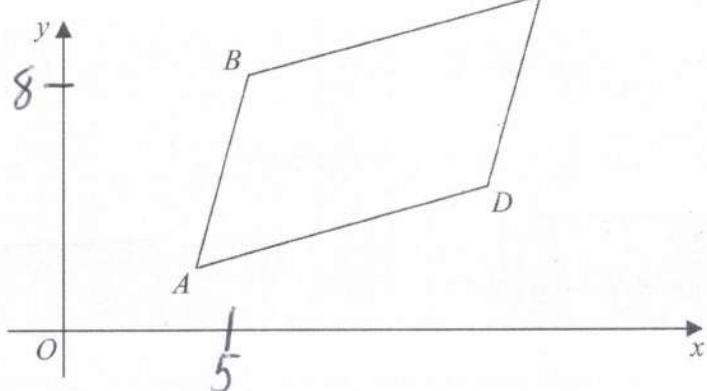


Diagram NOT
accurately drawn

$$\vec{AB} = \begin{pmatrix} 2 \\ 7 \end{pmatrix} \quad \vec{AC} = \begin{pmatrix} 10 \\ 11 \end{pmatrix}$$

The point B has coordinates (5, 8)

(a) Work out the coordinates of the point C.

$$\begin{bmatrix} 5 \\ 8 \end{bmatrix} - \begin{bmatrix} 2 \\ 7 \end{bmatrix} + \begin{bmatrix} 10 \\ 11 \end{bmatrix}$$

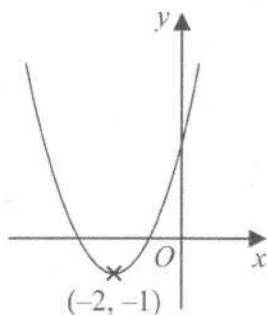
$$(\underline{13}, \underline{12}) \quad (3)$$

The point E has coordinates (63, 211)

(b) Use a vector method to prove that ABE is a straight line.

$$\vec{BE} = \begin{bmatrix} 63 \\ 211 \end{bmatrix} - \begin{bmatrix} 5 \\ 8 \end{bmatrix} = \begin{bmatrix} 58 \\ 203 \end{bmatrix} = 29 \begin{bmatrix} 2 \\ 7 \end{bmatrix}$$

$$= 29 \times \vec{AB}$$


hence straight line.

(2)

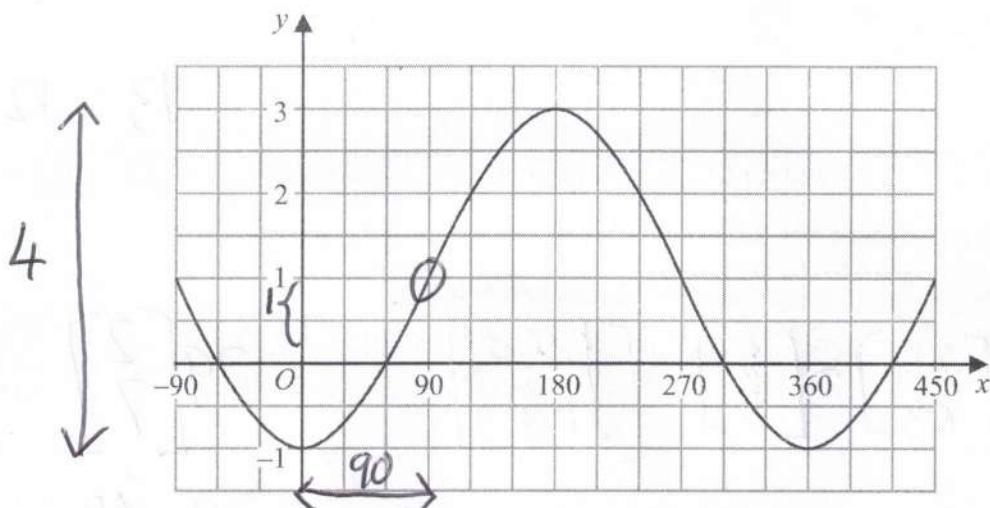
(Total for Question 17 is 5 marks)

18

The diagram shows the curve with equation $y = f(x)$

The coordinates of the minimum point of the curve are $(-2, -1)$

(a) Write down the coordinates of the minimum point of the curve with equation


(i) $y = f(x - 5)$ = "right 5"

(.....,.....)

(ii) $y = \frac{1}{2} f(x)$ = scale factor
↓ of $\times 0.5$

(-2, $-\frac{1}{2}$)
(2)

The graph of $y = a \sin(x - b)^\circ + c$ for $-90^\circ \leq x \leq 450^\circ$ is drawn on the grid below.

(b) Find the value of a , the value of b and the value of c .

$a = \dots$ 2

$b = \dots$ 90

$c = \dots$ 1

(3)

(Total for Question 18 is 5 marks)

19 Jack plays a game with two fair spinners, A and B.

Spinner A can land on the number 2 or 3 or 5 or 7

Spinner B can land on the number 2 or 3 or 4 or 5 or 6

$$\rightarrow E = \frac{1}{4}$$

$$\rightarrow E = \frac{3}{5}$$

Jack spins both spinners.

He wins the game if one spinner lands on an odd number **and** the other spinner lands on an even number.

Jack plays the game twice.

Work out the probability that Jack wins the game both times.

$$\begin{aligned}
 \text{Win} &= \begin{matrix} \text{A B} \\ \text{O E} \end{matrix} + \begin{matrix} \text{A B} \\ \text{E O} \end{matrix} \\
 &= \left(\frac{3}{4} \times \frac{3}{5} \right) + \left(\frac{1}{4} \times \frac{2}{5} \right) \\
 &= \frac{9}{20} + \frac{2}{20} \\
 &= \frac{11}{20}
 \end{aligned}$$

$$\text{Win twice} = \frac{11}{20} \times \frac{11}{20}$$

$$\frac{121}{400}$$

(Total for Question 19 is 4 marks)

20 ABC is an isosceles triangle such that

$$AB = AC$$

A has coordinates $(4, 37)$

B and C lie on the line with equation $3y = 2x + 12$

$$y = \frac{2}{3}x + 4$$

$$m = \frac{2}{3}$$

Find an equation of the line of symmetry of triangle ABC .

Give your answer in the form $px + qy = r$ where p , q and r are integers.

Show clear algebraic working.

Line of symmetry is
perpendicular to BC
(so $m = -\frac{3}{2}$)
and passes through A
($4, 37$)

so use $y = mx + c$

$$37 = \left(-\frac{3}{2}\right) \times 4 + c$$

$$\text{so } c = 43$$

$$y = -\frac{3}{2}x + 43$$

$$2y = -3x + 86$$

$$3x + 2y = 86$$

(Total for Question 20 is 5 marks)

TOTAL FOR PAPER IS 100 MARKS

