

1. Ivy mixes lemon juice, pineapple juice and orange juice in the ratio  $1 : 2 : 7$  to make a fruit drink.

Ivy has 330 ml of her fruit drink in a glass.

L P O

How much pineapple juice is in Ivy's glass?

[2]

$$P = \frac{2}{10}$$

$$\frac{1}{10} = 33$$

$$33 \times 2$$

$$66$$

ml

2. The shape below consists of a square surrounded by four semi-circles. The diameter of each semi-circle is 12 cm.

$$\square = 12 \times 12 \\ = 144$$

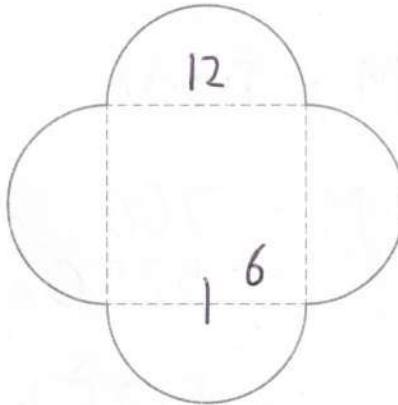



Diagram not drawn to scale

Work out the area of the shape.  
Give your answer in the form  $a + b\pi$ .

[4]

$$4 \times \square = 2 \times 0^r = \pi \times 6^2 \times 2$$

$$= 72\pi \text{ cm}^3$$

$$\text{Area} = 144 + 72\pi \text{ cm}^2$$

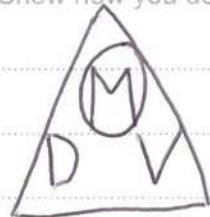


3. Izaan has a block of stainless steel with volume  $700 \text{ cm}^3$ .  
The stainless steel has a density of  $7.5 \text{ g/cm}^3$ .

Izaan says,

The block has a mass of less than 5 kg.

Is Izaan correct?


[3]

Yes

No

Cannot tell

Show how you decide.



$$M = D \times V$$

$$\begin{array}{r} 75 \\ \times 37 \\ \hline 525 \end{array}$$

$$\begin{aligned} M &= 700 \times 7.5 \\ &= 5250 \text{ g} \\ &= 5.25 \text{ Kg} \end{aligned}$$

$$5.25 > 5$$



4. Oliver and Kian bake cakes.

The mass of Oliver's cake is between 400 g and 500 g inclusive.  
The mass of Kian's cake is between 200 g and 300 g inclusive.

Complete the inequality to show the least and greatest possible differences between the mass of their cakes. [2]

$$100 \leq \text{mass difference} \leq 300$$

$$400 - 300 \quad 500 - 200$$

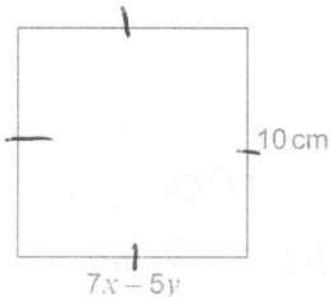
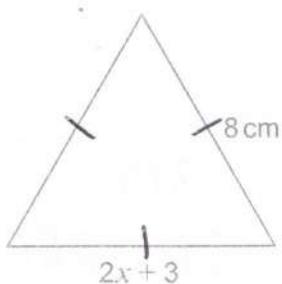
5. Jen is mixing some paints to make brown paint.

She made orange paint by mixing red paint and yellow paint.  
40% of the orange paint was red paint.

She then mixes the orange paint with some blue paint in the ratio 20 : 21 to make brown paint.

What fraction of the brown paint is red paint? [3]

Brown



$$\begin{array}{ccc} \frac{20}{41} & \xrightarrow{\quad} & \frac{21}{41} \\ \text{Orange} & & \text{Blue} \\ \downarrow & & \downarrow \\ \text{Red} & & \text{Yel} \end{array}$$

$$\frac{4}{10}$$

$$R = \frac{20}{41} \times \frac{4}{10} = \frac{8}{41}$$



6. The diagram below shows an equilateral triangle and a square.



*Diagram not drawn to scale*

Use an algebraic method to find the value of  $x$  and the value of  $y$ .  
You must show all your working.

[5]

$$2x + 3 = 8$$

$$2x = 5$$

$$x = 2.5$$

$$\begin{array}{r} 2.5 \\ \times 37 \\ \hline \end{array}$$

$$* \underline{17.5}$$

$$7x - 5y = 10$$

$$17.5 - 5y = 10$$

$$7.5 = 5y$$

$$y = 5 \sqrt{7.5}$$

$$x = 2.5$$

$$1.5$$



7. (a) Simplify  $7\sqrt{2} \times 3$

$$= 21\sqrt{2}$$

[1]

(b) Complete the calculation below.

$$2\sqrt{11} \times \sqrt{11} = 22$$

[1]

8. Factorise  $3xy^2 + 6x^2y$

[3]

$$x(y) \quad x(x)y \quad 3xy(y + 2x)$$

9. Hans thinks of a number.

When his number is multiplied by  $2.4 \times 10^5$ , the answer is  $9.6 \times 10^8$ .

What number did Hans think of?

Write your answer in standard form.

[2]

$$\frac{9.6 \times 10^8}{2.4 \times 10^5}$$

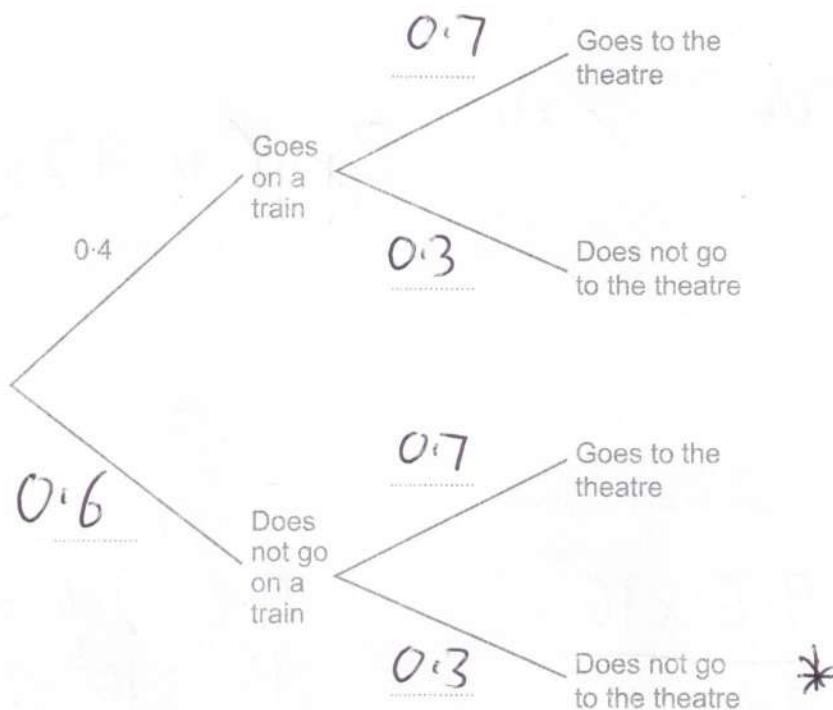
$$9.6 \div 2.4 = 4$$

$$10^8 \div 10^5 = 10^3$$

$$= \underline{\underline{4}} \times 10^3$$



10. Kate is visiting London.


The probability that she will go on a train is 0.4.

The probability of Kate going to the theatre is independent of her going on a train.

The probability that she goes on a train and goes to the theatre is 0.28.

(a) Complete the following tree diagram.

[4]



(b) Calculate the probability that Kate does not go on a train and does not go to the theatre.

[2]

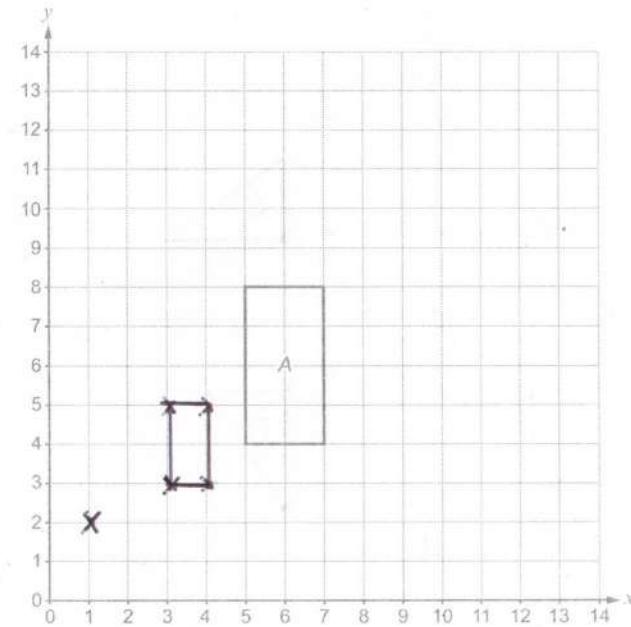
$$0.6 \times 0.3 = 0.18$$



11. It takes 2 hours to empty 8 identical tanks of water using 9 identical pumps.

How long would it take to empty 2 of these tanks using 3 of these pumps?

Examiner  
only


[3]

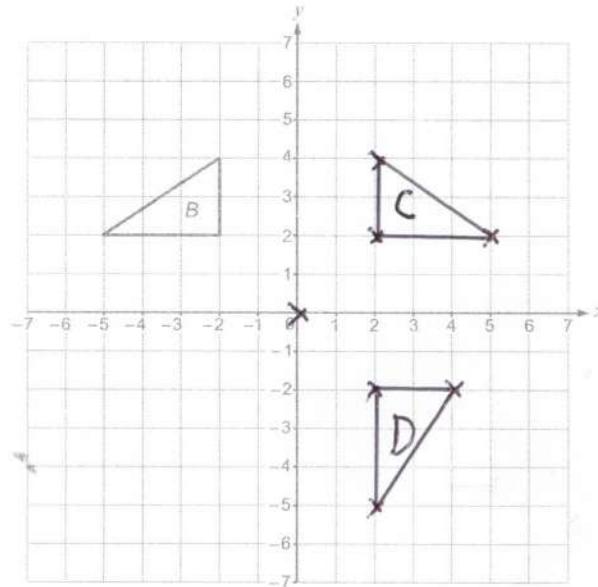
$$\frac{1}{3} \text{ of pumps} = 3 \times \text{longer}$$

$$\frac{1}{4} \text{ of tanks} = \frac{1}{4} \times \text{time to complete}$$

$$2 \times 3 = 6 \text{ hrs} \quad 6 \div 4 = 1.5 \text{ hrs}$$

12. (a)




Draw the enlargement of rectangle A with scale factor  $\frac{1}{2}$  and centre of enlargement (1, 2).

Examiner  
only

[2]



(b)



Triangle B is reflected in the line  $x = 0$  to give triangle C.

Triangle C is rotated  $90^\circ$  clockwise about  $(0, 0)$  to give triangle D.

(i) Draw triangle C and triangle D. [2]

(ii) Describe the single transformation that maps triangle B to triangle D. [1]

Reflection in the line  $y = x$

Examiner  
onlyG/01/04/03  
11

13. (a) Show that the lines

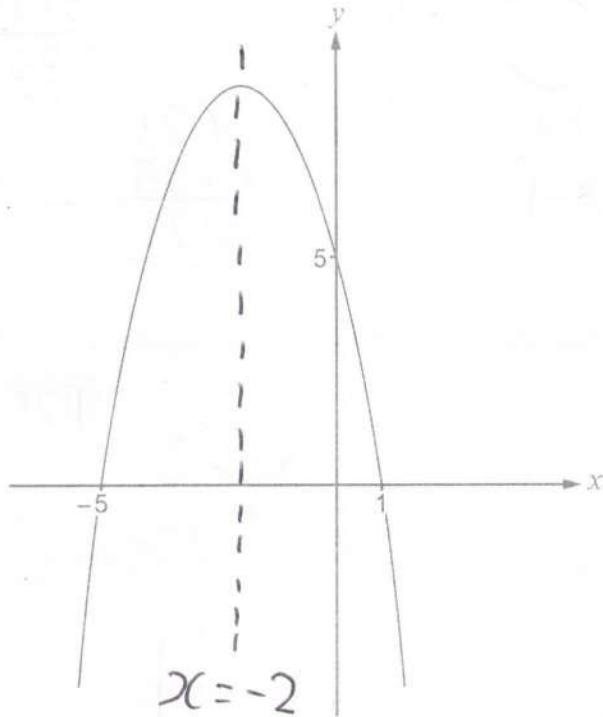
$$3y - 12x = 9 \text{ and } 2y = 8x - 13$$

are parallel to each other.

$$3y = 12x + 9$$

$$y = 4x + 3$$

$$m = 4$$


$$y = 4x - \frac{13}{2}$$

$$m = 4$$

Both have gradient = 4  
hence parallel

Examiner  
only

(b) The diagram shows the curve  $y = 5 - 4x - x^2$ .



Calculate the coordinates of the turning point of the curve.

[2]

$$\frac{-5+1}{2} = -2 \quad \left| \begin{array}{l} y = 5 - 4(-2) - (-2)^2 \\ = 5 + 8 - 4 \\ = \underline{\underline{9}} \end{array} \right.$$

$$(-2, 9)$$



14. (a) (i) Find the next term in this sequence.

[2]

$$\begin{array}{cccccc}
 \frac{5}{2} & \cancel{x5} & -\frac{25}{4} & \frac{125}{8} & -\frac{625}{16} & \frac{3125}{32} \\
 & \cancel{x2} & & & & \\
 & x-1 & & & \cancel{x+25} & \underline{3125}
 \end{array}$$

(ii) Find the next term in this Fibonacci-style sequence.

[1]

$$\begin{array}{cccccc}
 10 & 15 & 25 & 40 & 65 & 105 \\
 & & & \cancel{+} & &
 \end{array}$$

(b) The  $n$ th term of a sequence is  $(10\sqrt{5})^n$ .

Calculate the 4th term of this sequence.  
You must simplify your answer.

[2]

$$\begin{aligned}
 (10\sqrt{5})^4 &= 10^4 \times \sqrt{5}^4 \\
 &= 10000 \times 25
 \end{aligned}$$

4th term = 250000



(c) Find the  $n$ th term of the sequence below.

[2]

$$\begin{array}{r}
 3 \overline{)15 \ 20 \ 35 \ 63 \ 99} \\
 \underline{12} \ \underline{20} \ \underline{35} \ \underline{63} \ \underline{99} \\
 8 \ \ \ \ 8 \ \ \ \ 8 \ \ \ \ 8 \ \ \ \ 99 \\
 \end{array}
 \quad \left. \begin{array}{l} \\ \\ \\ \\ \end{array} \right) \textcircled{1} \quad 8 \div 2 = 4$$

$$n^{\text{th}} \text{ term} = 4n^2 - 1$$



15. (a) Factorise  $5x^2 + 13x + 6$ .

$$ac = 30$$

[2]

$$\begin{array}{c}
 5x^2 + 10x \mid + 3x + 6 \\
 5x(x+2) \mid + 3(x+2) \\
 = (5x+3)(x+2)
 \end{array}$$

(b) Adrian is trying to solve  $3 - 4x > 11$ .  
He writes the following:

$$\begin{array}{l}
 3 - 4x > 11 \\
 -4x > 8 \\
 x > \frac{8}{-4} \\
 x > -2
 \end{array}$$

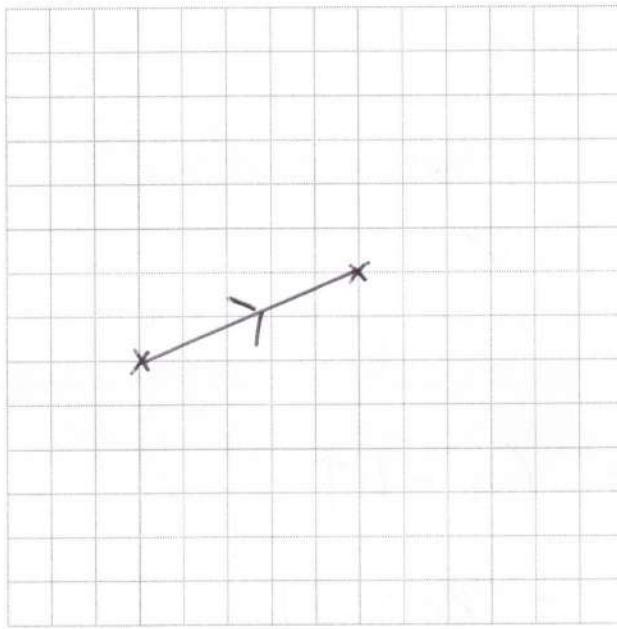
Adrian's method is incorrect. Explain why.

[1]

When dividing by a negative the  
inequality should reverse

(c) Simplify  $\frac{(x^4)^3}{x^2}$ .

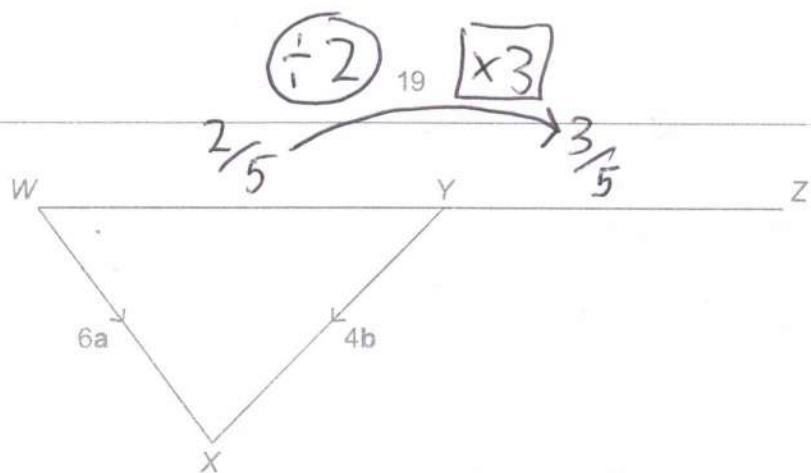
[2]


$$\begin{aligned}
 &= \frac{x^{4 \times 3}}{x^2} = \frac{x^{12}}{x^2} = x^{12-2} \\
 &= \underline{\underline{x^{10}}}
 \end{aligned}$$



16. (a) The vector  $t = \begin{pmatrix} 7 \\ -2 \end{pmatrix}$  and the vector  $w = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$ .

On the grid below, draw the vector  $t + w$ .


[2]



$$t + w = \begin{bmatrix} 7 \\ -2 \end{bmatrix} + \begin{bmatrix} -2 \\ 4 \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$$



(b)

*Diagram not drawn to scale* $WYZ$  is a straight line. ✓The vectors  $WX$  and  $YX$  are shown in the diagram. ✓Given that  $WY : YZ = 2 : 3$ , write the vector  $WZ$  in the form  $ma + nb$ .

[3]

$$\overrightarrow{WY} = 6a - 4b$$

$$\frac{1}{2} = 3a - 2b$$

$$\times 3 = 9a - 6b$$

$$\begin{aligned} WZ &= (6a - 4b) + (9a - 6b) \\ &= \underline{\underline{15a - 10b}} \end{aligned}$$



17. (a) Evaluate  $8^{\frac{5}{3}}$ .

$$= \sqrt[3]{8^5}$$

[2]

$$= 2^5 = 2 \times 2 \times 2 \times 2 \times 2 \\ = \underline{\underline{32}}$$

(b) Write  $\frac{6}{\sqrt{2}}$  in the form  $a\sqrt{2}$  where  $a$  is an integer.

[2]

$$\frac{6}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{6\sqrt{2}}{2} \\ = \underline{\underline{3\sqrt{2}}}$$

(c) Estimate the value of  $\frac{(1.96 \times 10^8) + (6.89 \times 10^8)}{298}$ .

Write your answer in standard form.

[3]

$$= \frac{(2 \times 10^8) + (7 \times 10^8)}{300} \\ = \frac{9 \times 10^8}{3 \times 10^2} = 3 \times 10^6$$



18. Lena sold 200 drinks on Saturday.

This table shows some information about these drinks.

|        | Tea       | Coffee | Milkshake | Totals |
|--------|-----------|--------|-----------|--------|
| Small  | 5         | 36     | $x=20$    | 61     |
| Medium | <u>18</u> | 3      | 6         | 27     |
| Large  | <u>30</u> | 42     | $2x=40$ * | 112    |
| Totals | 53        | 81     | 66        | 200    |

On that Saturday:

- 15% of the drinks sold were large teas. ✓
- The ratio of the number of medium teas to the number of medium milkshakes sold was 3:1.
- The number of large milkshakes sold was double the number of small milkshakes sold. \*

Complete the table above using this information.

One of the drinks is selected at random.

Find the probability that this drink was either a medium tea or a medium coffee.

[6]

$$\frac{15}{100} \times \frac{200}{1} = 30$$

Milkshake

$$x + 2x = 66 - 6$$

$$3x = 60$$

$$x = 20$$

MT: MM :

$$3 : 1 \rightarrow \times 6$$

$$\underline{18} \quad \underline{6}$$

Probability of selecting a medium tea or a medium coffee =

$$18 + 3$$

$$\frac{21}{200}$$



19. 1134 can be written as  $2 \times 3^4 \times 7$ .

$2 \ 3 \ 3 \ 3 \ 7 \ 7 \ 7$

(a) Find the highest common factor of 504 and 1134.  
Give your answer as an integer.

[4]

$$\begin{array}{c}
 504 \\
 \diagdown \quad \diagup \\
 2 \quad 252 \\
 \diagdown \quad \diagup \\
 3 \quad 84 \\
 \diagdown \quad \diagup \\
 1 \quad 7 \\
 \diagdown \quad \diagup \\
 2 \quad 2 \quad 2
 \end{array}
 \qquad
 \begin{array}{r}
 84 \\
 3 \overline{) 252} \\
 \end{array}$$

$$\begin{aligned}
 \text{HCF} &= 7 \times 3 \times 3 \times 2 \\
 &= 21 \times 6
 \end{aligned}$$

Highest common factor of 504 and 1134 = 126

(b) What is the smallest whole number 1134 can be divided by to give a square number? [1]

$$\begin{array}{l}
 2 \times 3^4 \times 7 \\
 2 \times 7 = \underline{\underline{14}}
 \end{array}$$



20. X, Y and Z are points on the circumference of a circle with centre O.

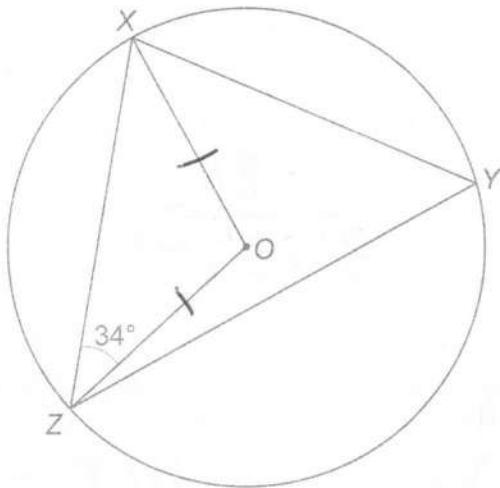



Diagram not drawn to scale

Maia thinks that  $\hat{XYZ}$  is  $58^\circ$ .  
Prove that Maia is incorrect.

You must show all your working and give a reason for each step of your proof.

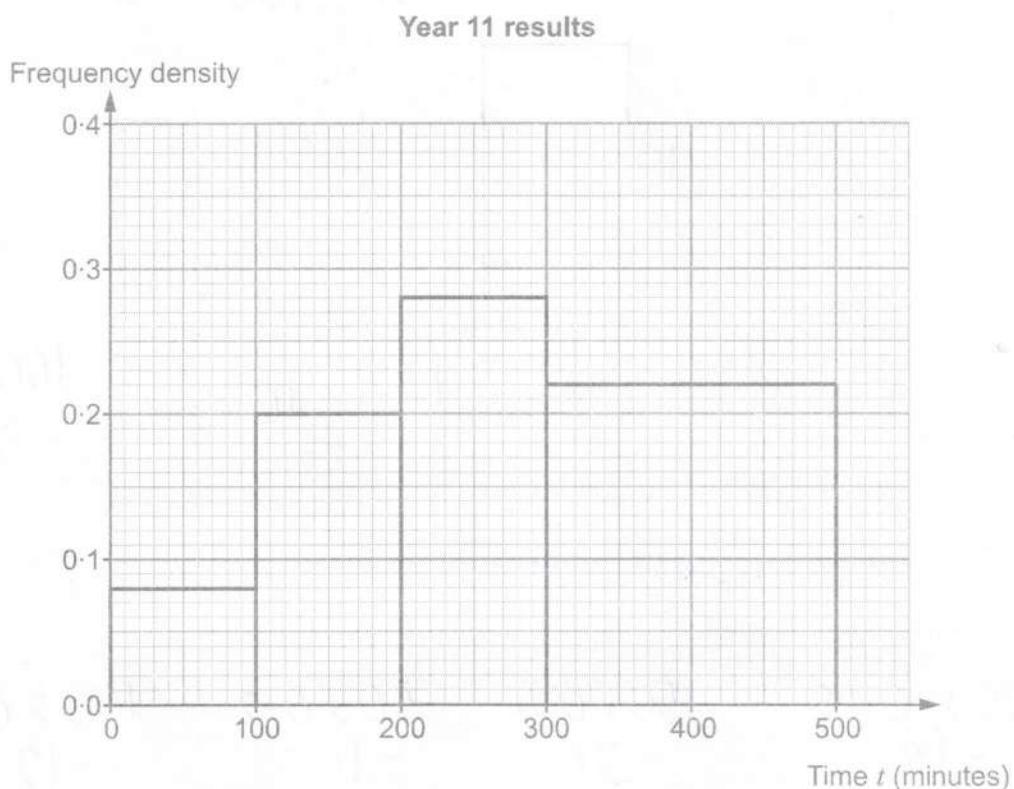
[4]

$$\angle XOZ = 180 - (34 \times 2) = 112^\circ$$

(two radii  $\rightarrow$  base angles of an isosceles triangle are equal)

$$\angle XYZ = 112 \div 2 = \underline{\underline{56^\circ}}$$

(angle at the centre is twice the angle at the circumference)



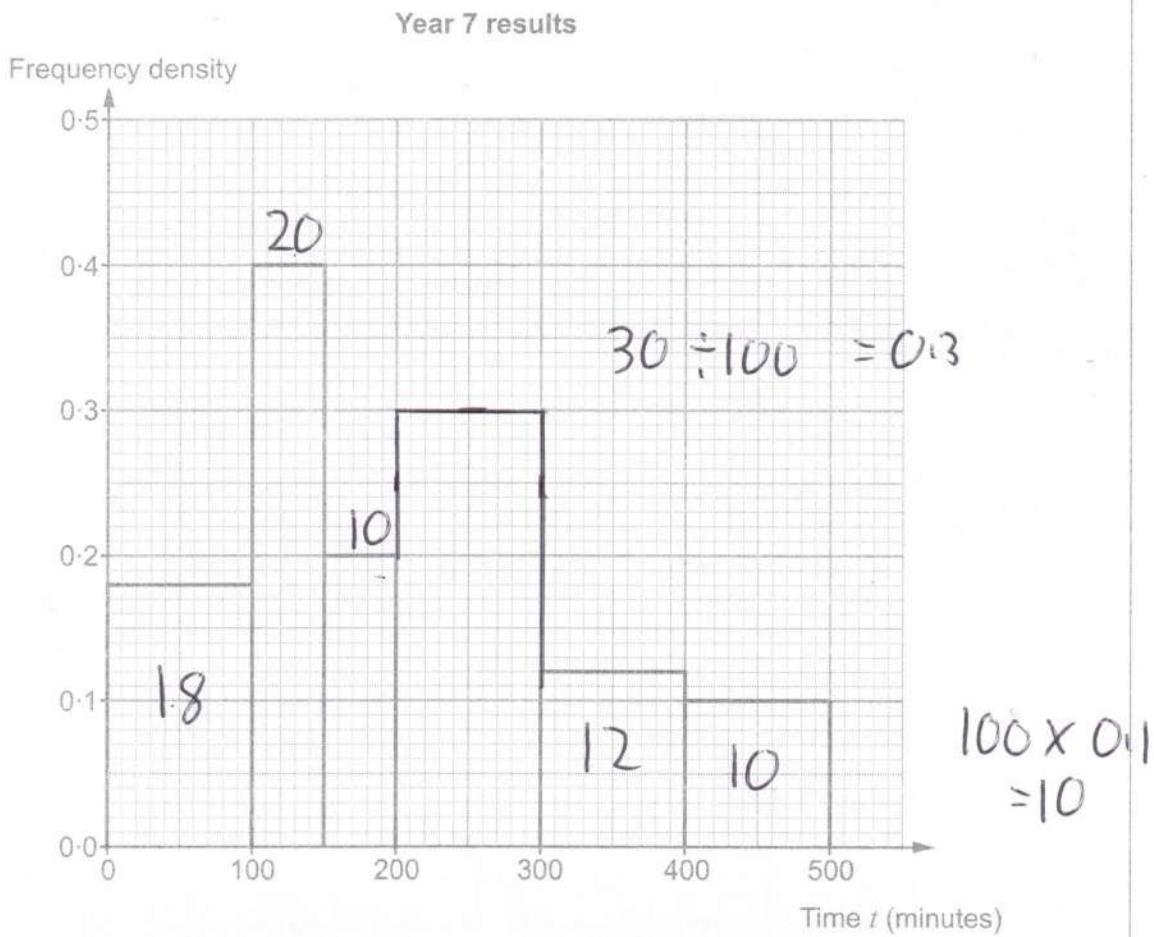

21. Alice is investigating how much time, in minutes, pupils at her school spend on their mobile phones.  
She asks 100 students in Year 11 and 100 students in Year 7 to record how much time they each spend on their mobile phones on a Monday.

(a) The results for Year 11 are shown in the table below.

| Time $t$<br>(minutes) | $0 \leq t < 50$ | $50 \leq t < 100$ | $100 \leq t < 200$ | $200 \leq t < 300$ | $300 \leq t < 400$ | $400 \leq t < 500$ |
|-----------------------|-----------------|-------------------|--------------------|--------------------|--------------------|--------------------|
| Number of<br>students | 3               | 5                 | 20                 | 28                 | 30                 | 14                 |

Alice displays her results in the histogram shown below.




Give one criticism of Alice's histogram.

[1]

Grouping the data means some information has been lost



(b) Alice's histogram showing the results for the 100 Year 7 students is shown below. The group with time  $200 \leq t < 300$  is missing.



Complete the histogram.

You must show all your working.

[3]

$$\begin{array}{llll}
 100 \times 0.18 & 50 \times 0.4 & 50 \times 0.2 & 100 \times 0.12 \\
 = 18 & = 20 & = 10 & = 12 \\
 100 - 70 & = \underline{\underline{30}}
 \end{array}$$

(c) Make **one** comparison between the amount of time spent on their mobile phones by all the students in Year 11 and all the students in Year 7. [1]

Y11 students spend more time on their phones than Y7 students



22. The following iterative formula can be used to find the number of cells of bacteria after  $n$  days.

$$B_0 = 1000$$

$$B_{n+1} = 1.2B_n \text{ where } n \geq 0$$

(a) Show that the number of cells of bacteria after 1 day is 1200. [1]

$$B_1 = 1.2 \times 1000 = 1200$$

(b) Use this formula to find the number of cells of bacteria after 3 days. [3]

$$B_2 = 1200 \times 1.2 = 1440$$

$$B_3 = 1440 \times 1.2 = 1728.0$$

Number of cells of bacteria after 3 days = 1728

$$\begin{array}{r}
 1440 \\
 \times 54 \quad 12 \\
 \hline
 17280
 \end{array}$$



23. Adina has 5 wooden blocks. Each block is a different colour.

Blue

Red

Green

Yellow

Purple

Adina selects 3 of these wooden blocks at random.

Each time she does this, she places them on top of each other.  
Two ways of arranging the blocks are shown below.

|        |
|--------|
| Blue   |
| Yellow |
| Red    |

|        |
|--------|
| Green  |
| Red    |
| Purple |

(a) Calculate the number of different ways of arranging the blocks. [2]

$$5 \times 4 \times 3 = \underline{\underline{60}}$$

(b) How many arrangements are there where the middle block is either blue or red? [2]

4

4

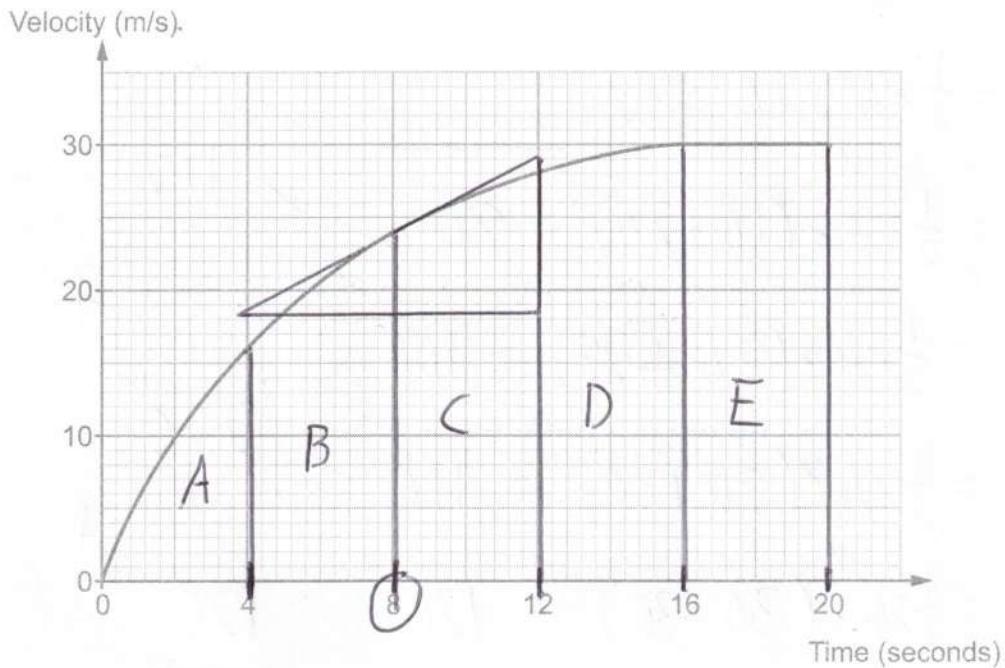
$B=1$

$R=1$

3

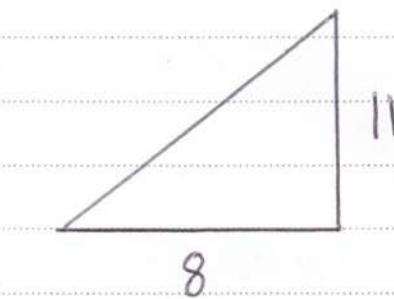
3

$$(4 \times 1 \times 3)$$


+

$$(4 \times 1 \times 3)$$

$$= \underline{\underline{24}}$$




24. The velocity-time graph below shows the velocity of a car for the first 20 seconds from rest.

Examiner  
only

(a) Calculate an estimate of the acceleration of the car at time 8 seconds.

[3]



$$11 \div 8 = 1 \frac{3}{8}$$

Acceleration = 1.375 m/s<sup>2</sup>



(b) Use 5 vertical strips of equal width to calculate an estimate of the distance travelled by the car during the first 20 seconds of motion. [3]

$$A = \frac{1}{2} \times 4 \times 16 = 32$$

$$B = \frac{1}{2} \times 4 \times (16 + 24) = 80$$

$$C = \frac{1}{2} \times 4 \times (24 + 28) = 104$$

$$D = \frac{1}{2} \times 4 \times (28 + 30) = 116$$

$$E = \frac{1}{2} \times 4 \times (30 + 30) = 120$$

112

+

220

+

120

452

Distance travelled = ..... m



25. (a)  $h(x) = x^2 + 3$ .

Show that  $h^{-1}(x)$  has no solutions for  $x < 3$ .

[3]

$$y = x^2 + 3$$

$$y - 3 = x^2$$

$$\sqrt{y-3} = x$$

$$\text{so } h^{-1}(x) = \sqrt{x-3}$$

Cannot  $\sqrt{-\text{ve}}$  so  $x \text{ min} = 3$

(b)  $f(x) = x^2 + 5$ .  
 $g(x) = x - 4$ .

Show that  $fg(x) - gf(x) = 20 - 8x$ .  
 You must show all your working.

[4]

$$(x-4)^2 + 5 - (x^2 + 5 - 4)$$

$$= x^2 - 8x + 16 + 5 - x^2 - 1$$

$$= 16 + 5 - 1 - 8x$$

$$= 20 - 8x$$



26. Make  $e$  the subject of the following formula.

[5]

$$3e = \sqrt{7 - de^2}$$

$$9e^2 = 7 - de^2$$

$$9e^2 + de^2 = 7$$

$$e^2(9+d) = 7$$

$$e^2 = \frac{7}{9+d}$$

$$e = \pm \sqrt{\frac{7}{9+d}}$$

27. Express 0.345 as a fraction.

[2]

$$x = 0.3\dot{4}\dot{5}$$

$$10x = 3.4\dot{5}$$

$$1000x = 345.\dot{4}\dot{5}$$

$$\underline{990x = 342}$$

$$x = \frac{342}{990}$$

OE



28.

Examiner  
only

Sofia's dog is running through a field.  
Its speed at  $t$  seconds is  $w$  metres per second.

The diagram below shows the speed of the dog for part of its run.

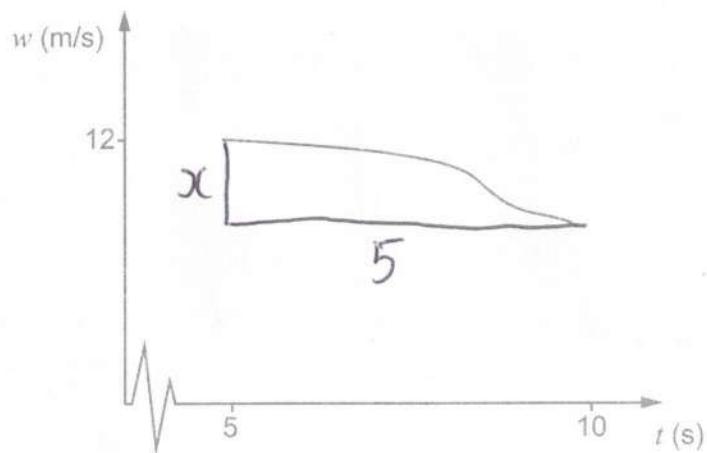



Diagram not drawn to scale

When  $t = 5$ ,  $w = 12$ .

The average deceleration of the dog between 5 and 10 seconds is  $1.5 \text{ m/s}^2$ .  $\therefore$  M

Calculate the speed of Sofia's dog when  $t = 10$ .

You must show all your working.

[3]

$$x = 5 \times 1.5 = 7.5$$

$$12 - 7.5$$

Speed when  $t = 10$  is ..... m/s

4.5

END OF PAPER

