


Question		Answer	Marks	Part marks and guidance	
1	(a)	$3x(2x + 3)$ final answer	2	B1 for $x(6x + 9)$ or $3(2x^2 + 3x)$ or correct answer seen and spoilt.	Condone missing final bracket and e.g. $2\times x$
	(b)	$(x + 5)(x + 3)$ final answer	2	B1 for $(x + a)$ and $(x + b)$ where $ab = 15$ or $a + b = 8$	Condone missing final bracket
2	(a)	$v = u + at$ written or better e.g. $21 = u + 2 \times 8$ $[u =] 21 - 2 \times 8 [= 5]$ or $21 - 16 [= 5]$	B1 B1	If 0 scored SC1 for $5 + 2 \times 8$ or $5 + 16 [= 21]$	written means selected and better includes $u = v - at$
	(b)	104	3	M2 for $21^2 = 5^2 + 2 \times 2 \times s$ or better oe or M1 for $v^2 = u^2 + 2as$ seen	Equivalents include e.g. $6 + 8 + 10 + 12 + 14 + 16 + 18 + 20$
3	(a)	435	3	B2 for $[k =] 29$ or for an answer that satisfies both conditions e.g. $3 \times 5 \times 31 = 465$ or M1 for $400 \div (3 \times 5)$ maybe implied by 26.66... or 26.7 or for $3 \times 5 \times (\text{their prime number})$ correctly evaluated or for $3 \times 5 \times 27 = 405$	e.g. 29 used in final trial or even as <i>their</i> answer using any prime number that is greater than 29 e.g. M1 for $3 \times 5 \times 23 = 345$ in working or $3 \times 5 \times 31 = 465$ with 31 as the answer treat factor trees or factor tables as multiplication
	(b)	any correct reason e.g. a and/or b are factors	1		see appendix

Question		Answer	Marks	Part marks and guidance	
4	(a)	(1.46, 715) accurately plotted	1		Tolerance : no daylight between <i>their</i> point and correct point
	(b)	Negative	1		Ignore embellishments
	(c)	(1.47, 620) ringed	1		allow any indication
	(d) (i)	Accurate line of best fit	1		see overlay between (1.44, 720) and (1.44, 740) and between (1.60, 650) and (1.60, 670) and must reach vertical lines at each end, ignore beyond overlay
	(ii)	FT <i>their</i> line	1FT	FT <i>their</i> line with negative gradient only	tolerance : our reading ± 3
	(e)	Two different products correctly calculated, one product in the range $1.40 \leq \text{price} \leq 1.52$ and one product in the range $1.52 < \text{price} \leq 1.65$	3	B2 for one product correctly calculated or B1 for one product calculated with the incorrect result	see appendix for the products, the points used must be either the given points or on <i>their</i> lobf not the outlier, if there are more than two products then select the best two
5		1261	3	M2 for $8000(1 + \frac{5}{100})^3 \text{ oe}$ or M1 for <i>their</i> $9261 - 8000$ or $(1 + \frac{5}{100})^3 \text{ oe}$ implied by $1.157[625]$ or 1.158	M2 implied by 9261 Note : 9200 and 1200 are the results by simple interest and score 0

Question		Answer	Marks	Part marks and guidance
6	(a)	7 by 6 rectangle (not dashed) with correct dividing line 	3	B2 for a 7 by 6 rectangular outline or for any rectangular outline correctly splitting the shorter side in half by one line or B1 for any rectangular outline outline is not a square, accept horizontally or vertically accept freehand and for accuracy mark intention, condone dashed centre line If the diagram uses the grid edges and the line is not drawn SC2 for an otherwise correct answer or SC1 for a 7 by 6 rectangular outline
	(b)	Equilateral triangle with side 6 cm and no extra lines 	2	B1 for equilateral triangle but the incorrect size or a correct equilateral triangle with one extra line accept good freehand and for accuracy mark intention
7		2.6	2	M1 for $36\ 920 \div 14\ 200$ Allow clear correct conversions to other units so 0.0026, 2600 or 2600 000 score 2 marks for M1 condone figs $36\ 920 \div$ figs14 200
		g/cm^3 or g cm^{-3}	1	Units correct or consistent with <i>their</i> answer e.g. 0.0026 kg/cm^3 , 2600 kg/m^3 , $2\ 600\ 000 \text{ g/m}^3$ or 2.6 kg/dm^3 Accept units in words including use of "per".

Question		Answer	Marks	Part marks and guidance
8		144	4	<p>M3 for $\frac{354}{15k+20k+24k} \times 24k$ oe or</p> <p>M2 $\frac{354}{15k+20k+24k}$ or all three in a ratio e.g. $15k : 20k : 24k$ or</p> <p>M1 for two ratios with a common number of red implied by $15k$ (white) and $24k$ (red seen, $k > 0$) or for $15k : 20k : 24k$ or $[15k : 20k : 24k]$</p>
9		4 655 to 4 655.7 or 4 656	4	<p>B2 for 21 or M1 for $\frac{8.4}{2} \times 5$ oe and</p> <p>M1 for $\pi \times 8.4^2 \times$ their 21</p>
10	(a)	correct curve within tolerance	3	<p>B2 for 8 points accurately plotted or B1 for 5 points accurately plotted</p>
	(b)	$x = 0.5$ oe	1	
	(c)	-2.3 or -2.4 3.3 or 3.4	2	<p>B1 for either answer SC1 for an answer to more than 1 dp in each of -2.4 to -2.3 and 3.3 to 3.4</p> <p>If 1 scored FT their curve for 2 marks or if 0 scored FT their curve for 1 or 2 marks or for SC1</p>

Question		Answer	Marks	Part marks and guidance
11		24	4	<p>M2 for $\frac{45}{12} \times 8$ or $\frac{8}{12} \times 45$ oe or 30 or M1 for $\frac{45}{12}$ or $\frac{12}{45}$ or $\frac{12}{8}$ or $\frac{8}{12}$ oe</p> <p>and</p> <p>M1 for $99 - 45 - \text{their RQ}$ or 24 correctly placed on diagram</p>
12		$[y =] 56x^2$ with correct working	6	<p>B2 for $y = 3.5t^2$ or M1 for $y = kt^2$ or better e.g. $14 = k2^2$ or $k = 3.5$ B2 for $t = 4x$ or M1 for $t = mx$ or better e.g. $12 = m3$ or $m = 4$</p> <p>M1 for $y = 3.5(4x)^2$</p> <p>If 0, 1 or 2 scored, instead award SC3 for $y = 56x^2$ with no working or insufficient working</p>
13		17 with correct working	4	<p>B1 for 37.5 selected or 37.49[9...] B1 for 2.25 selected</p> <p>M1 for $(36.5 \text{ to } 37.5) \div (2.25 \text{ to } 2.35)$</p> <p>If 0 scored, instead award SC1 for an answer of 17 with no working or insufficient working or SC1 for either 36.5 and 37.49[9...]/37.5 or 2.25 and 2.349[9...]/2.35</p>

Question		Answer	Marks	Part marks and guidance	
14	(a)	0.8×100	1		accept $\frac{8}{10}$ oe fraction for 0.8
	(b)	1 654	4	M3 for $80 \times 2.5 + 95 \times 3.4 + 75 \times 5 + 120 \times 6.3$ or $200 + 323 + 375 + 756$ or M2 for the expression with two errors or B1 for one of 95, 75 and 120 or M1 for $80 \times 2.5 +$ <i>their</i> $95 \times 3.4 +$ <i>their</i> $75 \times 5 +$ <i>their</i> 120×6.3	for M3 condone one error allow M2 for $200 + 646 + 750 + 756$ allow M1 for e.g. $200 + 646 + 750 + 1575$
15	(a)	24	3	M1 for $16 = \frac{1}{4}$ or 4×16 oe or 64 M1 for <i>their</i> $64 - 16 - 15 - 9$ oe	Alt.: M1 for 16×3 and M1 for $48 - 15 - 9$
	(b)	$\frac{16}{40}$ oe or $\frac{16}{16+their\ 24}$ oe	2FT	B1FT for $\frac{16}{k}$ or $\frac{k}{16+their\ 24}$ (both proper fractions)	FT <i>their</i> 24
16		1763 or 1763.4 to 1763.5 with correct working	6	M2 for $\frac{1}{2} \times 72 \times$ <i>their</i> $65.25\dots \times \sin 25$ or M1 for [AC=] $72\cos 25$ or $72\sin 65$ oe M3 for $\frac{1}{2} \times$ <i>their</i> $65.254 \times$ <i>their</i> $42.24\dots \times \sin 34$ oe or M2 for [AB=] $\frac{their65.25\dots \times \sin 38}{\sin 108}$ oe or M1 for $\frac{AB}{\sin 38} = \frac{their65.25\dots}{\sin 108}$ oe If 0, 1 or 2 scored award SC3 for answer 1763 or 1763.4 to 1763.5 with no or insufficient working If 0 or 1 scored award SC2 for 992.79... or 992.8 or 770.69... or 770.7 with no or insufficient working	"Correct working" requires evidence of at least M2 or M1 M1 condone answers in range 1750 – 1780 with full correct working M2 implied by 992.79... or 992.8 or maybe by 985 – 999 [...] nfw or M1 implied by [AC=] 65.2[5...] or 65.3 M3 implied by 770.69... or 770.7 or maybe by 760 – 783 nfw M2 implied by [AB=] 42.2[4...] accept any correct method e.g. M2 for area of triangle ACD = $\frac{1}{2} \times 72\sin 25 \times 72\cos 25$ oe or M1 for [CD=] $72\sin 25$ implied by 30.4...

Question		Answer	Marks	Part marks and guidance	
17		$\frac{271}{1000}$ or 0.271	4	B3 for 271 OR B2 for 1000 or 729 OR M1 for $10 \times 10 \times 10$ or $9 \times 9 \times 9$	Accept any correct method e.g. M3 for $1 \times 10 \times 10 + 9 \times 1 \times 10 + 9 \times 9 \times 1$ or 271 or M2 for two of these three terms correct or M1 for one of these three terms correct
18	(a)	$5 \times 22 - 8$ or $\frac{102+8}{5} = 22$ oe	M1		Condone $110 - 8$ or $5u_3 - 8 = 102$ then $5u_3 = 110$ then $u_3 = 22$
	(b)	6	3	M2 for $\frac{22+8}{5}$ or better or M1 for $u_3 = 5u_2 - 8$ or better	e.g. M2 for $\frac{30}{5}$ e.g. M1 for $22 = 5u_2 - 8$
	(c)	2 $u_2 = u_1$, so all terms will be equal	B1	B1 If 0 scored SC1 for next term = 2 or $5 \times 2 - 8$ seen	

Question		Answer	Marks	Part marks and guidance
19		[$h =$] 4.8 [$A =$] 1350 with correct working	6	<p>M2 for $\sqrt[3]{\frac{3750}{240}}$ or 2.5 oe or $\sqrt[3]{\frac{240}{3750}}$ or 0.4 oe or M1 for $\frac{3750}{240}$ or 15.625 oe or $\frac{240}{3750}$ or 0.064 oe</p> <p>B2 for [$h =$] 4.8 or M1 for $\frac{12}{2.5}$ oe</p> <p>B2 for [$A =$] 1350 or M1 for $216 \times (\text{their } 2.5)^2$ oe</p> <p>“Correct working” requires evidence of at least M2</p> <p>e.g. 12×0.4</p> <p>e.g. $216 \div (\text{their } 0.4)^2$</p> <p>Note : Use of scale factor = $\frac{\sqrt[3]{3750}}{\sqrt[3]{240}}$ often leads to accuracy errors so award</p> <p>M2 for $\frac{\sqrt[3]{3750}}{\sqrt[3]{240}}$</p> <p>M1 for $\frac{12}{\text{their } 2.5}$ oe (penalise accuracy once here at first occurrence)</p> <p>M1 A1 for $216 \times (\text{their } 2.5) = \text{answer to A}$ involving a rounding error</p>

Question		Answer	Marks	Part marks and guidance																			
20	(a)	$[2^3 - 3 \times 2 - 4 =] -2$ $[3^3 - 3 \times 3 - 4 =] 14$ and any indication of a sign change [so solution lies between 2 and 3]	M1 M1 A1	Must indicate their input and output Dep. on at least M1 and different signs	Accept other values of x used between 2 and 3, correct to 2 figs rot, (see table in part (c)). For full marks, the two values need to produce a sign change. <u>Alternative method</u> SC3 for using an iterative equation that converges and concluding statement that first two values lie between 2 and 3 oe																		
	(b)	$[x = 2.5] 4.125$ $2 < x < 2.5$	B1 B1		Condone equals signs and condone in words, allow a smaller correct interval																		
	(c)	Two correct evaluations in the range $2 < x < 2.5$, one which gives a positive value and the other giving a negative value $[x =] 2.2$	M2 A1	M1 for one correct evaluation in the range $2 < x < 2.5$ Dependent on achieving at least M1 <u>Alternative method</u> M1 rearranges to a correct iterative formula (converging or diverging) and M1 attempts first two iterations (either substitution seen or found to at least 2dp rot) and A1 for 2.2 OR If 0 scored SC1 for 2.2 with no worthwhile working	Working for (c) may be seen in (b) <u>Examples</u> <table border="1"> <tr><td>2.05</td><td>-1.53488</td></tr> <tr><td>2.1</td><td>-1.039</td></tr> <tr><td>2.15</td><td>-0.51163</td></tr> <tr><td>2.2</td><td>0.048</td></tr> <tr><td>2.25</td><td>0.640625</td></tr> <tr><td>2.3</td><td>1.267</td></tr> <tr><td>2.35</td><td>1.927875</td></tr> <tr><td>2.4</td><td>2.624</td></tr> <tr><td>2.45</td><td>3.356125</td></tr> </table> <i>condone missing suffixes here</i> e.g. $x_{n+1} = \sqrt[3]{3x_n + 4}$ with $x_0 = 2$, $x_1 = 2.1544\dots$, $x_2 = 2.1872\dots$	2.05	-1.53488	2.1	-1.039	2.15	-0.51163	2.2	0.048	2.25	0.640625	2.3	1.267	2.35	1.927875	2.4	2.624	2.45	3.356125
2.05	-1.53488																						
2.1	-1.039																						
2.15	-0.51163																						
2.2	0.048																						
2.25	0.640625																						
2.3	1.267																						
2.35	1.927875																						
2.4	2.624																						
2.45	3.356125																						