Please check the examination de	tails below	before ente	ering your candidate information		
Candidate surname			Other names		
	Contro	e Number	Candidate Number		
Pearson Edexcel evel 1/Level 2 GCSE (9–1)	Centra	e Number	Candidate Number		
Tuesday 5 November 2019					
Morning (Time: 1 hour 30 minut	tes)	Paper R	eference 1MA1/1H		
Mathematics Paper 1 (Non-Calculate	or)				
Higher Tier					

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided - there may be more space than you need.
- You must show all your working.
- Diagrams are **NOT** accurately drawn, unless otherwise indicated.
- Calculators may not be used.

Information

- The total mark for this paper is 80
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

Answer ALL questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

1 Find the Lowest Common Multiple (LCM) of 108 and 120

(Total for Question 1 is 3 marks)

2 There are 60 people in a choir.

Half of the people in the choir are women.

The number of women in the choir is 3 times the number of men in the choir.

The rest of the people in the choir are children.

the number of children in the choir : the number of men in the choir = n : 1

Work out the value of n.

You must show how you get your answer.

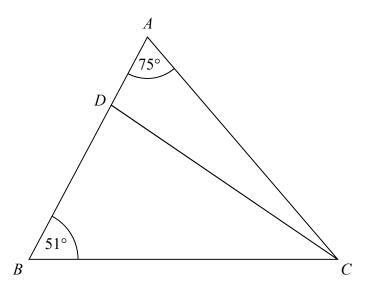
n =

(Total for Question 2 is 4 marks)

 $3 \quad \text{Work out } 1\frac{3}{4} \times 1\frac{1}{3}$

Give your answer as a mixed number.

(Total for Question 3 is 3 marks)


4 Use a ruler and compasses to construct the line from the point *P* perpendicular to the line *CD*. You must show **all** construction lines.

 $\times P$

C______D

(Total for Question 4 is 2 marks)

5 The diagram shows triangle *ABC*.

ADB is a straight line.

the size of angle DCB: the size of angle ACD = 2:1

Work out the size of angle BDC.

(Total for Question 5 is 4 marks)

- 6 4 red bricks have a mean weight of 5 kg.
 - 5 blue bricks have a mean weight of 9 kg.
 - 1 green brick has a weight of 6kg.

Donna says,

"The mean weight of the 10 bricks is less than 7 kg."

Is Donna correct?

You must show how you get your answer.

(Total for Question 6 is 3 marks)

7	(a) Simplify	$(p^2)^5$		
	(b) Simplify	$12x^7y^3 \div 6x^3y$		(1)
			(Total for Question 7 is 3 mar	(2)

8 The accurate scale drawing shows the positions of port P and a lighthouse L.

Scale: 1 cm represents 4 km.

Aleena sails her boat from port P on a bearing of 070°

She sails for $1\frac{1}{2}$ hours at an average speed of 12 km/h to a port Q.

Find

- (i) the distance, in km, of port Q from lighthouse L,
- (ii) the bearing of port Q from lighthouse L.

distance QL = km

bearing of Q from $L = \dots$

(Total for Question 8 is 5 marks)

- 9 A car travels for 18 minutes at an average speed of 72 km/h.
 - (a) How far will the car travel in these 18 minutes?

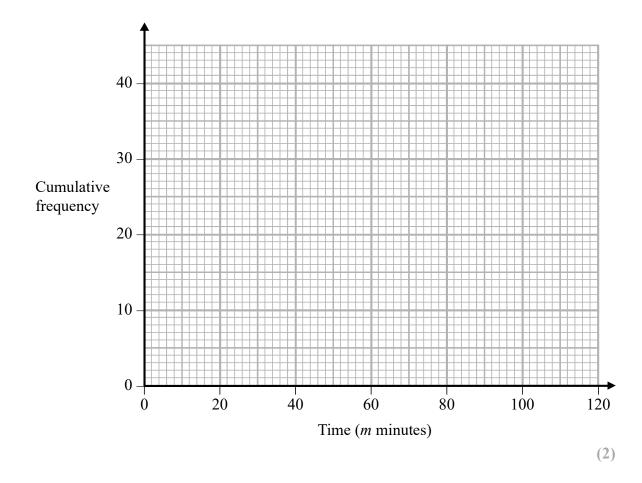
 	kn
(2)	

David says,

"72 kilometres per hour is faster than 20 metres per second."

(b) Is David correct?
You must show how you get your answer.

(2)


(Total for Question 9 is 4 marks)

10 The cumulative frequency table shows information about the times, in minutes, taken by 40 people to complete a puzzle.

Time (m minutes)	Cumulative frequency
$20 < m \leqslant 40$	5
$20 < m \leqslant 60$	25
$20 < m \leqslant 80$	35
$20 < m \leqslant 100$	38
$20 < m \leqslant 120$	40

(a) On the grid below, draw a cumulative frequency graph for this information.

(b) Use your graph to find an estimate for the interquartile range.	
One of the 40 people is chosen at random.	minutes
(c) Use your graph to find an estimate for the probability that this person took between 50 minutes and 90 minutes to complete the puzzle.	
	(2)

(Total for Question 10 is 6 marks)

11 There are *p* counters in a bag. 12 of the counters are yellow.

Shafiq takes at random 30 counters from the bag. 5 of these 30 counters are yellow.

Work out an estimate for the value of p.

(Total for Question 11 is 2 marks)

12
$$T = \frac{q}{2} + 5$$

Here is Spencer's method to make q the subject of the formula.

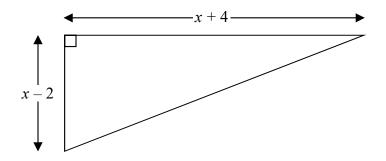
$$2 \times T = q + 5$$

$$q = 2T - 5$$

What mistake did Spencer make in the first line of his method?

(Total for Question 12 is 1 mark)

13 (a) Write $\frac{5}{x+1} + \frac{2}{3x}$ as a single fraction in its simplest form.


(2)

(b) Factorise $(x + y)^2 + 3(x + y)$

(1)

(Total for Question 13 is 3 marks)

14 The diagram shows a right-angled triangle.

All the measurements are in centimetres.

The area of the triangle is 27.5 cm²

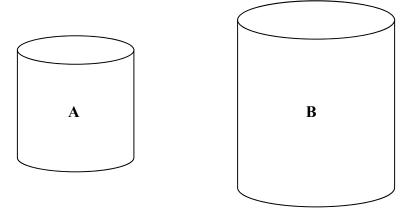
Work out the length of the shortest side of the triangle.

You must show all your working.

..... cm

(Total for Question 14 is 4 marks)

15 Express 0.418 as a fraction. You must show all your working.


(Total for Question 15 is 3 marks)

- 16 (a) Rationalise the denominator of $\frac{22}{\sqrt{11}}$ Give your answer in its simplest form.
 - (b) Show that $\frac{\sqrt{3}}{2\sqrt{3}-1}$ can be written in the form $\frac{a+\sqrt{3}}{b}$ where a and b are integers.

(3)

(Total for Question 16 is 5 marks)

17 A and B are two similar cylindrical containers.

the surface area of container A: the surface area of container B = 4:9

Tyler fills container A with water.

She then pours all the water into container **B**.

Tyler repeats this and stops when container \mathbf{B} is full of water.

Work out the number of times that Tyler fills container A with water.

You must show all your working.

(Total for Question 17 is 4 marks)

18 The function f is given by

$$f(x) = 2x^3 - 4$$

(a) Show that $f^{-1}(50) = 3$

(2)

The functions g and h are given by

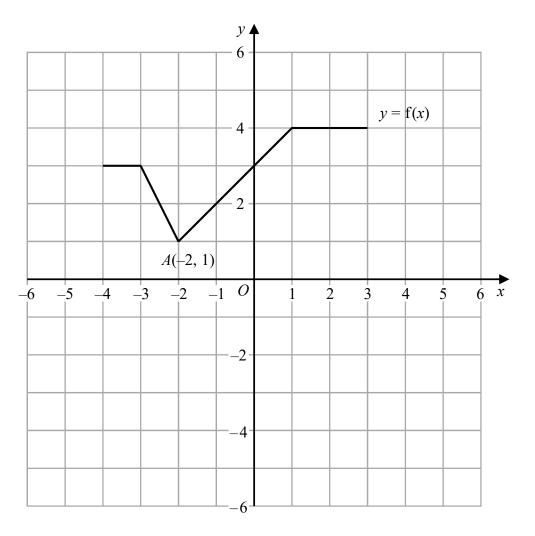
$$g(x) = x + 2$$
 and $h(x) = x^2$

(b) Find the values of x for which

$$hg(x) = 3x^2 + x - 1$$

(4)

(Total for Question 18 is 6 marks)



19 Given that $9^{-\frac{1}{2}} = 27^{\frac{1}{4}} \div 3^{x+1}$ find the exact value of *x*.

x =

(Total for Question 19 is 3 marks)

20 The graph of y = f(x) is shown on the grid.

(a) On the grid, draw the graph with equation y = f(x + 1) - 3

(2)

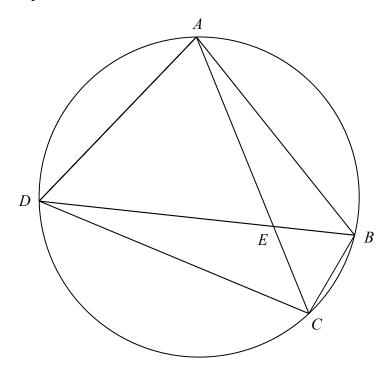
Point A(-2, 1) lies on the graph of y = f(x).

When the graph of y = f(x) is transformed to the graph with equation y = f(-x), point A is mapped to point B.

(b) Write down the coordinates of point B.

(.....**,**(1)

(Total for Question 20 is 3 marks)


21 Sketch the graph of

$$y = 2x^2 - 8x - 5$$

showing the coordinates of the turning point and the exact coordinates of any intercepts with the coordinate axes.

(Total for Question 21 is 5 marks)

22 A, B, C and D are four points on a circle.

AEC and DEB are straight lines.

Triangle AED is an equilateral triangle.

Prove that triangle ABC is congruent to triangle DCB.

(Total for Question 22 is 4 marks)

TOTAL FOR PAPER IS 80 MARKS

