

EDUQAS GCSE MATHEMATICS

AUTUMN 2023 MARK SCHEME

Component 1: Foundation Tier	Mark	Comment
1.(a)(i) 800	B1	
1.(a)(ii) 19	B1	
1.(a)(iii) $30 \div 5 \times 2$ or $\frac{2}{5} \times 30$ or equivalent	M1	May be seen in stages.
12	A1	ISW
1.(a)(iv) $70 \div 10 \times 3$ or 0.3×70 or equivalent	M1	May be seen in stages.
21	A1	ISW
1.(a)(v) 13.83	B1	
1.(b) 0.08	B1	
1.(c) 5	B1	
	(9)	
2.(a) (The number is) 16	B1	Answer lines take precedence.
(The factors of this number are) 1, 2, 4, 8, 16	B1	Must be a list, not products. If no marks award SC1 for correctly listing <u>all</u> of the factors of <u>two</u> non-prime numbers between 13 and 19: • 14 - 1, 2, 7, 14 • 15 - 1, 3, 5, 15 • 18 - 1, 2, 3, 6, 9, 18
2.(b) 14, 28, 42	B1	May be in any order.
2.(c) 23, 24, (25), 26, 27	B2	B1 for 3 values out of 23, 24, 26, 27. Penalise -1 for each further value.
	(5)	
3. 40(%)	B2	B1 for $\frac{2}{5}$ or $\frac{8}{20}$ oe ISW
	(2)	

<p>4.(a)</p> <p>(Key: represents) 4 (students).</p> <table border="1" data-bbox="176 249 457 323"> <tr> <td>Chicken</td> <td>10</td> </tr> <tr> <td>Ham</td> <td>12</td> </tr> </table> <table border="1" data-bbox="176 345 568 480"> <tr> <td>Cheese</td> <td></td> <td></td> <td></td> </tr> <tr> <td>Tuna</td> <td></td> <td></td> <td></td> </tr> </table>	Chicken	10	Ham	12	Cheese				Tuna				<p>B1</p> <p>B2</p>	<p>FT 'their key' if possible for B2 or B1.</p> <p>B1 for any 2 or 3 correct.</p> <p>Can be unshaded and in any orientation.</p>
Chicken	10													
Ham	12													
Cheese														
Tuna														
<p>4.(b)</p> <p>Ham</p>	<p>B1</p>	<p>FT from (a) provided not contradicted by table or pictogram</p>												
		<p>(4)</p>												
<p>5.(a)</p> <p>4 and 16</p>	<p>B2</p>	<p>Answer space takes precedence. Allow 2^2 and 4^2.</p> <p>B1 for one of the following:</p> <ul style="list-style-type: none"> • a final answer of two numbers with a difference of 12, one of which is square, • a final answer of two square numbers, • listing at least three square numbers in their working lines. 												
<p>5.(b)</p> <p>No, AND correct reason stated e.g.</p> <ul style="list-style-type: none"> • 'two odd numbers add to give an even number (and 21 is odd)' • 'you can only add an odd number and an even number (to get 21)' • 'even + odd = odd (and 21 is odd)' 	<p>E1</p>	<p>If a box is not ticked, 'No' may be implied by their reason.</p> <p>Accept equivalent reasons e.g. One number would always have to be even.</p> <p>Do not allow 'no two odd numbers add to give 21' unless accompanied with at least two examples of two odd numbers adding to make an even number.</p> <p>E0 if candidates simply list pairs of numbers which add to 21 unless they are identified as odd or even.</p> <p>E0 if incorrect box is ticked, even if the correct reason is given.</p>												
<p>5.(c)</p> <p>0.3, 0.302, 0.35, 0.8, 3</p>	<p>B1</p>	<p>(4)</p>												

<p>6.(a)(i)</p> <p>Jamal selected and all 3 correct totals seen as tallies or frequencies.</p> <table border="1" data-bbox="179 316 687 457"> <thead> <tr> <th>Candidate</th><th>Tally</th><th>Frequency</th></tr> </thead> <tbody> <tr> <td>Ashton</td><td> </td><td>7</td></tr> <tr> <td>Jamal</td><td> </td><td>10</td></tr> <tr> <td>Oliver</td><td> </td><td>8</td></tr> </tbody> </table>	Candidate	Tally	Frequency	Ashton		7	Jamal		10	Oliver		8	B2	<p>If both tallies and frequencies are given, they must agree for B2 and B1.</p> <p>Frequencies may not be seen in the table.</p> <p>B1 for one of the following:</p> <ul style="list-style-type: none"> three frequencies or tallies completed with one or two correct and a correct FT decision three correct frequencies or tallies and an incorrect decision or no decision. Jamal, with <u>no</u> incorrect working seen. <p>If no marks, award SC1 for a single slip in converting tallies to frequencies with Jamal selected.</p>
Candidate	Tally	Frequency												
Ashton		7												
Jamal		10												
Oliver		8												
<p>6.(a)(ii)</p> <p>$\frac{8}{25} \times 100$</p> <p>32 (%)</p>	<p>M1</p> <p>A1</p>	<p>FT 'their frequency' for Oliver if unambiguously stated in (a)</p>												
<p>6.(b)</p> <p>Any suitable explanation, e.g.</p> <ul style="list-style-type: none"> 'The boxes overlap' 'I don't know which box to tick if I've had 2 injuries' 	<p>E1</p>													
<p>(5)</p>														
<p>7.(a)</p> <p>6×250</p> <p>1500 (cm)</p> <p>15 (m)</p>	<p>M1</p> <p>A1</p> <p>B1</p>	<p>Condone incorrect units at this stage.</p> <p>B1 implies M1 A1 provided not from incorrect work.</p> <p>FT 'their length' in cm if unambiguous</p>												
<p><u>Alternative method</u></p> <p>$250 \text{ cm} = 2.5 \text{ m}$</p> <p>$6 \times 2.5$</p> <p>15 (m)</p>	<p>B1</p> <p>M1</p> <p>A1</p>	<p>FT 'their 2.5' from incorrect place value.</p>												
<p>7.(b)</p> <p>$\frac{4}{5}$</p>	<p>B2</p>	<p>B1 for one of the following:</p> <ul style="list-style-type: none"> $\frac{240}{300}$ oe a fully simplified answer of $\frac{240}{240 + 60}$. $\frac{1}{5}$ (working with tulips) 												
<p>7. (c)</p> <p>1:1 oe</p>	<p>B1</p>	<p>Must be integers</p>												
<p>(6)</p>														

<p>8. Calculations that allow comparison e.g. $250 \div 10$ AND $300 \div 3$, 25(p) OR 27(p) 25(p) AND 27(p) with 1000ml indicated</p>	M1																											
	A1																											
	A1	If units are given, they must be correct for M1 A1 A1. Note: <table border="1"> <thead> <tr> <th></th><th>3000ml</th><th>100ml</th><th>1ml</th></tr> </thead> <tbody> <tr> <th>1000 ml</th><td>£7.50</td><td>£0.25</td><td>£0.0025</td></tr> <tr> <th>300 ml</th><td>£8.10</td><td>£0.27</td><td>£0.0027</td></tr> </tbody> </table> <table border="1"> <thead> <tr> <th></th><th>ml per p</th><th>ml per £</th><th>p per ml</th><th>£ per ml</th></tr> </thead> <tbody> <tr> <th>1000 ml</th><td>4</td><td>0.004</td><td>0.25</td><td>0.0025</td></tr> <tr> <th>300 ml</th><td>3.703...</td><td>0.003..</td><td>0.27</td><td>0.0027</td></tr> </tbody> </table>		3000ml	100ml	1ml	1000 ml	£7.50	£0.25	£0.0025	300 ml	£8.10	£0.27	£0.0027		ml per p	ml per £	p per ml	£ per ml	1000 ml	4	0.004	0.25	0.0025	300 ml	3.703...	0.003..	0.27
	3000ml	100ml	1ml																									
1000 ml	£7.50	£0.25	£0.0025																									
300 ml	£8.10	£0.27	£0.0027																									
	ml per p	ml per £	p per ml	£ per ml																								
1000 ml	4	0.004	0.25	0.0025																								
300 ml	3.703...	0.003..	0.27	0.0027																								
<i>Alternative method</i>																												
$250 \div 10 \times 3$ OR $81 \div 3 \times 10$ $75(p)$ OR $270(p)$ 1000ml indicated		<p>M1 Candidates may work in pounds or pence.</p> <p>A1 If units are given, they must be correct for M1 A1</p>																										
(3)																												
9.(a) $(x =) 7$	B1	Mark final answer. Accepted embedded answer provided it is not later contradicted.																										
9.(b) $- 48$	B1																											
9.(c) $23w - 6$	B2	Mark final answer. B1 for one of the following: <ul style="list-style-type: none">• expanding the bracket correctly $(18w - 6)$• $23w + k$ where $k \neq -6$• $aw - 6$ where $a \neq 23$																										
9.(d) $8t$	B1	B0 for $t = 8t$																										
	(5)																											
10.(a) 35	B1																											
10.(b) 14	B1	Answers may be embedded.																										
	(2)																											

11.(a) $5 \times 0.98 - 4.50$ OR $5 \times (0.98 - \frac{4.50}{5})$	M2	May be in £ or p but must be consistent. M1 for either: <ul style="list-style-type: none">• $5 \times 98p (= 490p)$ oe• $(0.98 - \frac{4.50}{5}) (= £0.08)$ oe;
(£) 0.4(0) OR 40 (p)	A1	Allow £0.40p but not 0.4(0)p
11.(b) $(£)10 - 4 \times (£)0.90 (= £6.40)$	M1	May be in £ or p but must be consistent.
(£)6.4(0) \div (£)1.25 oe	m1	FT their 'derived £6.40'. Allow M1 for either: <ul style="list-style-type: none">• sight of $1.25 \times 5 (= 6.25)$• at least two trials of $1.25 \times n =$ 'their 6.4(0)' where $n > 1$.
5 (cinnamon whirls)	A1	Provided no incorrect working seen. No marks awarded for an unsupported answer of 5.
<i>Alternative method</i>		
$4 \times (£)0.9(0) + 5 \times (£)1.25 (= £9.85)$ oe	M2	M1 for at least two trials of $4 \times 0.9 + n \times 1.25$ where $n > 1$.
5 (cinnamon whirls)	A1 (6)	
12.		May be seen in stages.
$390 \times 2\frac{1}{3}$ or $2 \times 390 + \frac{390}{3}$ oe	M2	M1 for one of the following: <ul style="list-style-type: none">• $390 \times 2.3 (= 897)$• $390 \times 2.2(0) (= 858)$• $390 \times 140 (= 54\,600)$
910	A1 (3)	CAO
13.(a) No, with a suitable reason e.g. • 'he needs 12 packs of water' • 'he has rounded down, not up' • 'he will only have 88 bottles' • 'he needs one extra (pack)' • 'he needs two extra bottles'	E1	Do not allow simply 'he won't have enough bottles'.
13.(b) Any suitable explanation e.g. • 'he should divide by 5, then multiply by 4' • 'he is working out 1/4 (not sharing in the ratio 4:1)'	E1	Do not accept simply 'he should divide by 5'. Allow E1 for candidates who show the correct calculation.
	(2)	
14.(a) 3, -1, -3	B2	B1 for any two correct
14.(b) Correct line drawn between (-2, 5) and (2, -3)	B2	B1 for one of the following: <ul style="list-style-type: none">• a correct line drawn but not over full domain.• 5 correct plots• 5 correct plots strict FT 'their table'
	(4)	

19. $\frac{90}{120}$ oe ISW	B2	May be seen on the diagram. B1 for one of the following: <ul style="list-style-type: none">• sight of 90• sight of $20+30+40$• $\frac{\text{their } 20+30+40}{120}$ with at most one error in a value or the addition.
	(2)	
20. An explanation using corresponding, alternate or allied/co-interior angles where the relevant angles have been identified e.g. <ul style="list-style-type: none">• $A\hat{E}F = 80^\circ$ AND 'allied/co-interior angles sum to 180°'• $A\hat{E}G = 100^\circ$ AND 'corresponding angles are equal'• $B\hat{E}F = 100^\circ$ AND 'alternate angles are equal'	E2	Angles may be marked on the diagram. E1 for correctly identifying an angle of 80 or 100, accompanied with a basic angle rule e.g. <ul style="list-style-type: none">• 'vertically opposite angles are equal'• 'angles on a straight line sum to 180°'. No marks for simply identified angles of 80 or 100 degrees on the diagram.
	(2)	
21.(a) Valid reason e.g. <ul style="list-style-type: none">• 'for a fair comparison'• 'to do the survey the same way'• 'so that the leaves are measured consistently'	E1	Do not allow 'to measure accurately'.
21.(b)(i) Asif, with a valid reason e.g. <ul style="list-style-type: none">• 'Asif's results have correlation (in his graph)'• 'There is no correlation between (length and width in) David's graph'	E1	Allow: <ul style="list-style-type: none">• 'there is a trend in Asif's results'• 'there is not a trend in David's results'• 'Asif's leaves follow a pattern (but David's don't)' E0 for: <ul style="list-style-type: none">• 'his results are closer together'• 'his graph was more consistent'• 'his results are similar/the same'
21.(b)(ii) Suitable line of best fit drawn	B1	Do not accept: <ul style="list-style-type: none">• a line clearly just joining the first point to the last point.• a 'corner to corner' line
21.(b)(iii) Width in the range 7 to 9 cm	B1	Strict FT from their positive line of best fit. Tolerance ± 0.1 .
	(4)	

22.* $2 \times 330 \div (1 + 2 + 7)$	M1	May be seen in stages. Full method required.
66 (ml)	A1 (2)	
23.* (Area of shape =) $2 \times \pi \times 6^2$ OR $4 \times \frac{\pi \times 6^2}{2}$ $+ 12^2$ $= 144 + 72\pi \text{ (cm}^2\text{)}$	M2 m1 A1 (4)	M1 for $\pi \times 6^2$ or $\frac{\pi \times 6^2}{2}$ FT from M2 or M1. CAO
24.* 700×7.5	M1	
5250 (g) or 5.25 kg	A1	CAO
No indicated or clearly implied	A1	FT 'their 700×7.5 '.
<u>Alternative method 1</u>		
$\frac{5 \times 1000}{700}$	M1	
$7.1(\dots \text{ cm}^3)$	A1	CAO
No indicated or clearly implied	A1	FT 'their $\frac{5 \times 1000}{700}$ '
<u>Alternative method 2</u>		
$\frac{5 \times 1000}{7.5}$	M1	
$666.6(\dots \text{ cm}^3)$ or $666.7(\text{cm}^3)$	A1	CAO
No indicated or clearly implied	A1	FT 'their $\frac{5 \times 1000}{7.5}$ '
	(3)	
25.		
For a correct method that produces 2 prime factors from the set {2, 2, 3, 5} before the 2 nd error.	M1	Must be a method that involves only division.
2, 2, 3, 5	A1	CAO for sight of the four correct factors (Ignore 1s)
$2^2 \times 3 \times 5$	B1	FT 'their primes' provided at least one index form used with at least a square. Do not FT non-primes. Allow $(2^2)(3)(5)$ and $2^2 \cdot 3 \cdot 5$ Do not allow 2 ² , 3, 5. Inclusion of 1 as a factor gets B0.
	(3)	

26.* $2x + 3 = 8$ $x = 2.5$	M1 A1	
$7 \times 2.5 - 5y = 10$ oe $y = 1.5$	M2 A1 (5)	FT 'their stated/derived 2.5' M1 for $7x - 5y = 10$
27.* $21\sqrt{2}$	B1 (1)	
28.* $3xy(y + 2x)$	B3 (3)	<p>Mark final answer. B2 for any one of the following:</p> <ul style="list-style-type: none"> • A correct answer seen then spoiled. • $3x(y^2 + 2xy)$ • $3y(xy + 2x^2)$ • $xy(3y + 6x)$ • $3xy(y + mx)$ where $m \neq 0$ or $m \neq 2$ • $3xy(ny + 2x)$ where $n \neq 1$ or $n \neq 0$ <p>B1 for any one of the following:</p> <ul style="list-style-type: none"> • $3(xy^2 + 2x^2y)$ • $x(3y^2 + 6xy)$ • $y(3xy + 6x^2)$ • $3xy(y + \dots)$ • $3xy(\dots + 2x)$
29.* $4(0) \times 10^3$	B2 (2)	<p>B1 for:</p> <ul style="list-style-type: none"> • sight of 4000 • $\frac{9.6 \times 10^8}{2.4 \times 10^5}$ oe • $4(0) \times 10^n$ where $n > 0$. • $a \times 10^3$ where $1 < a < 10$
30.*(a) 0.6 on the 'Does not go on a train' branch	B1	
Use of $0.4 \times \dots = 0.28$ OR $0.28 \div 0.4$	M1	
$P(\text{Goes to the theatre}) = 0.7$	A1	Allow M1A1 if 0.7 seen on one of the 'Goes to the theatre' branches.
0.7, 0.3, 0.7 and 0.3 correctly placed	A1	FT 'their 0.7' only if M1 awarded. (0.28, 0.72, 0.28, 0.72 is M0A0A0)
30. (b) 0.6×0.3 0.18	M1 A1 (6)	FT their tree provided both values between 0 and 1.

<p>31.*</p> <p>Correctly rewriting the equations in the form $y = mx + c$</p> <p>$y = 4x + 3$ AND $y = 4x - 6.5$</p> <p>(so lines parallel)</p>	<p>B3</p>	<p>B2 for:</p> <ul style="list-style-type: none"> one correct equation and a correct but incomplete rearrangement of the other seen e.g. $y = 4x - 6.5$ and $3y = 12x + 9$ both in the form $y = 4x + c$ with an error in one constant term, provided constants aren't equal. e.g $y = 4x - 6.5$ and $y = 4x + 9$ <p>B1 for:</p> <ul style="list-style-type: none"> one correct equation $y = 4x - 6.5$ or $y = 4x + 3$ two equations of the form $y = 4x + \dots$ with errors in both constant terms or no constant terms. <p><i>Allow all marks for equivalent complete methods</i> e.g. $6y - 24x = 18$ AND $6y - 24x = -39$ or $(3y = 12x + 9$ AND $3y = 12x - 19.5)$ <i>and a clear statement that the two equations are of the same form and the only difference is the constant, so they are parallel.</i></p>
	<p>(3)</p>	

<p>32*.</p> $2 \times \frac{2}{8} \times \frac{9}{3} \text{ or } 2 \div 4 \times 3 \text{ oe}$ <p style="text-align: center;">1.5 hours oe</p>	<p>M2</p>	<p>May be seen in stages. Candidates might work in minutes. M1 for one step, e.g.</p> <ul style="list-style-type: none"> • $2 \div 4$ (0.5 hours) • 2×3 (6 hours) oe 																								
<p><u>Alternative method 1</u></p> <table border="1" data-bbox="176 406 584 608"> <thead> <tr> <th>Pumps</th> <th>Tanks</th> <th>Time</th> </tr> </thead> <tbody> <tr> <td>9</td> <td>8</td> <td>2</td> </tr> <tr> <td>$\div 3$</td> <td></td> <td>$\times 3$</td> </tr> <tr> <td>3</td> <td>8</td> <td>6</td> </tr> <tr> <td></td> <td>$\div 4$</td> <td>$\div 4$</td> </tr> <tr> <td>3</td> <td>2</td> <td>1.5</td> </tr> </tbody> </table>	Pumps	Tanks	Time	9	8	2	$\div 3$		$\times 3$	3	8	6		$\div 4$	$\div 4$	3	2	1.5	<p>A1</p>	<p>CAO</p>						
Pumps	Tanks	Time																								
9	8	2																								
$\div 3$		$\times 3$																								
3	8	6																								
	$\div 4$	$\div 4$																								
3	2	1.5																								
<p><u>Alternative method 2</u></p> <table border="1" data-bbox="176 686 584 956"> <thead> <tr> <th>Pumps</th> <th>Tanks</th> <th>Time</th> </tr> </thead> <tbody> <tr> <td>9</td> <td>8</td> <td>2</td> </tr> <tr> <td>$\div 9$</td> <td></td> <td>$\times 9$</td> </tr> <tr> <td>1</td> <td>8</td> <td>18</td> </tr> <tr> <td></td> <td>$\div 4$</td> <td>$\div 4$</td> </tr> <tr> <td>1</td> <td>2</td> <td>4.5</td> </tr> <tr> <td>$\times 3$</td> <td></td> <td>$\div 3$</td> </tr> <tr> <td>3</td> <td>2</td> <td>1.5</td> </tr> </tbody> </table>	Pumps	Tanks	Time	9	8	2	$\div 9$		$\times 9$	1	8	18		$\div 4$	$\div 4$	1	2	4.5	$\times 3$		$\div 3$	3	2	1.5	<p>M1 A1</p>	<p>Method to find tanks and time for 3 pumps. Method to find time for 2 tanks. FT. CAO</p>
Pumps	Tanks	Time																								
9	8	2																								
$\div 9$		$\times 9$																								
1	8	18																								
	$\div 4$	$\div 4$																								
1	2	4.5																								
$\times 3$		$\div 3$																								
3	2	1.5																								
<p><u>Alternative method 3</u></p> <table border="1" data-bbox="176 1046 584 1315"> <thead> <tr> <th>Pumps</th> <th>Tanks</th> <th>Time</th> </tr> </thead> <tbody> <tr> <td>9</td> <td>8</td> <td>2</td> </tr> <tr> <td></td> <td>$\div 8$</td> <td>$\div 8$</td> </tr> <tr> <td>9</td> <td>1</td> <td>$\frac{1}{4}$</td> </tr> <tr> <td>$\div 3$</td> <td></td> <td>$\times 3$</td> </tr> <tr> <td>3</td> <td>1</td> <td>$\frac{3}{4}$</td> </tr> <tr> <td></td> <td>$\times 2$</td> <td>$\times 2$</td> </tr> <tr> <td>3</td> <td>2</td> <td>1.5</td> </tr> </tbody> </table>	Pumps	Tanks	Time	9	8	2		$\div 8$	$\div 8$	9	1	$\frac{1}{4}$	$\div 3$		$\times 3$	3	1	$\frac{3}{4}$		$\times 2$	$\times 2$	3	2	1.5	<p>M1 A1</p>	<p>Method to find pumps and time for 1 tank. Method to find pumps and time for 2 tanks. FT. CAO</p>
Pumps	Tanks	Time																								
9	8	2																								
	$\div 8$	$\div 8$																								
9	1	$\frac{1}{4}$																								
$\div 3$		$\times 3$																								
3	1	$\frac{3}{4}$																								
	$\times 2$	$\times 2$																								
3	2	1.5																								
		<p>(3)</p>																								