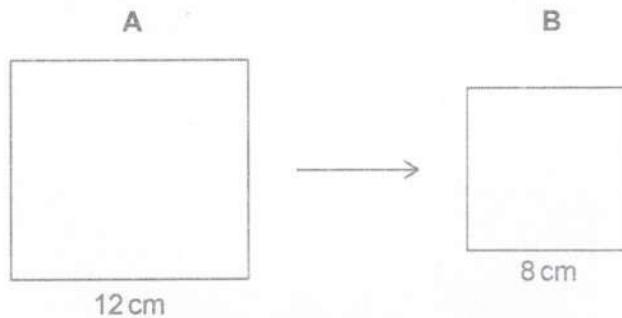


Answer all questions in the spaces provided.

1 The first four terms of a linear sequence are

6 13 20 27 +7

Write down the expression for the n th term.


$7n$ 7 14 21 28 -1

[1 mark]

Answer

$7n - 1$

2 Square A is enlarged to square B.

Write down the scale factor of the enlargement as a fraction.

[1 mark]

Answer

$\frac{8}{12}$ or $\frac{2}{3}$

0 2

IB/M/Nov23/8300/3H

3 The length of a line is 8 cm to the nearest centimetre.

Complete the error interval.

[2 marks]

Answer

7.5

cm \leq length <

8.5

cm

4 At what point does the graph $y = x^3 - 1$ cross the y axis?

[1 mark]

Answer (

0, -1)

Turn over for the next question

5

Turn over ►

0 3

IB/M/Nov23/8300/3H

5 Carly's total annual pay = salary + bonus

	Salary	Bonus
A	Last year	£26 000
B	This year	6% increase 9% decrease

Work out the percentage change in her total annual pay.

State whether it is an increase or a decrease.

[4 marks]

$$A = 30000$$

$$\begin{aligned} B &= (26000 \times 1.06) + (4000 \times 0.91) \\ &= 27560 + 3640 \\ &= 31200 \end{aligned}$$

$$\% \text{ inc} = \frac{31200 - 30000}{30000} \times 100$$

4% increase

Answer

6 An exhibition

was open for 240 hours
and
had 29 760 visitors.

For $\frac{2}{5}$ of the time the exhibition was open, there were 172 visitors per hour.

For the remaining time, how many visitors per hour were there?

[4 marks]

$$240 \times \frac{2}{5} \times 172 = 16512$$

$$29760 - 16512 = 13248 \text{ visitors}$$

$$240 \times \frac{3}{5} = 144 \text{ hrs}$$

$$\text{per hr} = \frac{13248}{144}$$

92

Answer

7 The first two cube numbers are 1 and 8, 27

Show that

the 3rd cube number can be written as the sum of three different prime numbers.

2 3 5 7 11 13 17

[3 marks]

$$27 = 3 + 5 + 19$$

or 3, 7, 17

or 3, 11, 13

Turn over ►

11

8 Circle the largest number.

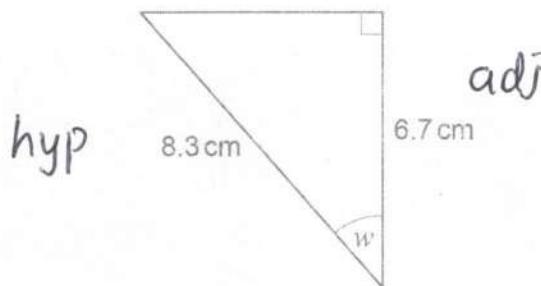
[1 mark]

5.304

5.344

5.3405.3444

5.304


5.344

5.34

5.34

9 Use trigonometry to work out the size of angle w .

[3 marks]

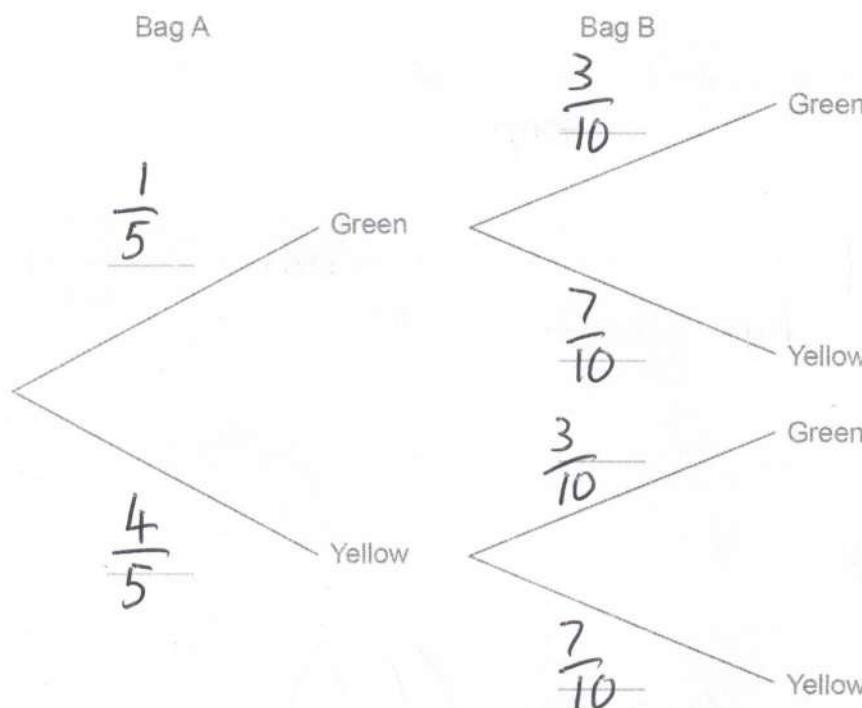
~~opp~~Not drawn
accurately
 $\text{O} \angle \text{H}$

$$w = \cos^{-1} \left(\frac{6.7}{8.3} \right)$$

$$= 36.17^\circ$$

$$w = \underline{\hspace{2cm}} \quad 36.2^\circ$$

10 Two bags contain only green discs and yellow discs.


Bag A contains 1 green disc and 4 yellow discs.

Bag B contains 3 green discs and 7 yellow discs.

One disc is picked at random from each bag.

10 (a) Complete the tree diagram with the correct probabilities.

[2 marks]

10 (b) Work out the probability that **both** discs are green.

[2 marks]

$$GG = \frac{1}{5} \times \frac{3}{10}$$

Answer

$$\frac{3}{50}$$

11

Solve these simultaneous equations.

Do not write
outside the
box.

$$7x + 2y = 100$$

$$3x + 2y = 48$$

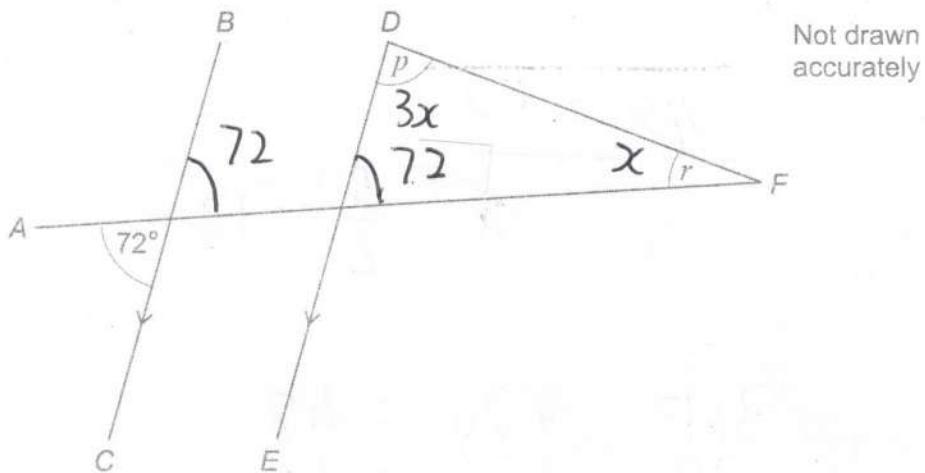
[3 marks]

$$\underline{4x = 52}$$

$$x = \frac{52}{4} = 13$$

$$\begin{array}{rcl} 3x13 & + 2y & = 48 \\ 39 & + 2y & = 48 \\ 2y & = 9 \\ y & = 9 \div 2 \end{array}$$

$$x = \underline{13} \quad y = \underline{4.5}$$



12

AF, BC, DE and DF are straight lines.

BC and DE are parallel.

Do not write outside the box

 p is three times r .Work out the size of angle p .

[3 marks]

$$4x + 72 = 180$$

$$4x = 108$$

$$x = \frac{108}{4} = 27$$

$$p = 3x = 3 \times 27$$

$$p = \underline{\hspace{2cm}}^{\textcircled{81}} \text{.}$$

6

Turn over ►

0 9

IB/M/Nov23/8300/3H

13 100 people were asked about the distance they travel from home to work.
The table shows information about the results.

Distance, d (miles)	Frequency
$0 \leq d < 5$	21
$5 \leq d < 10$	24
$10 \leq d < 20$	37
$20 \leq d < 40$	18

13 (a) Write down the greatest possible number of people who work from home. [1 mark]

Answer

21

13 (b) One person is chosen at random.

Work out the probability that the person travels at least 10 miles.

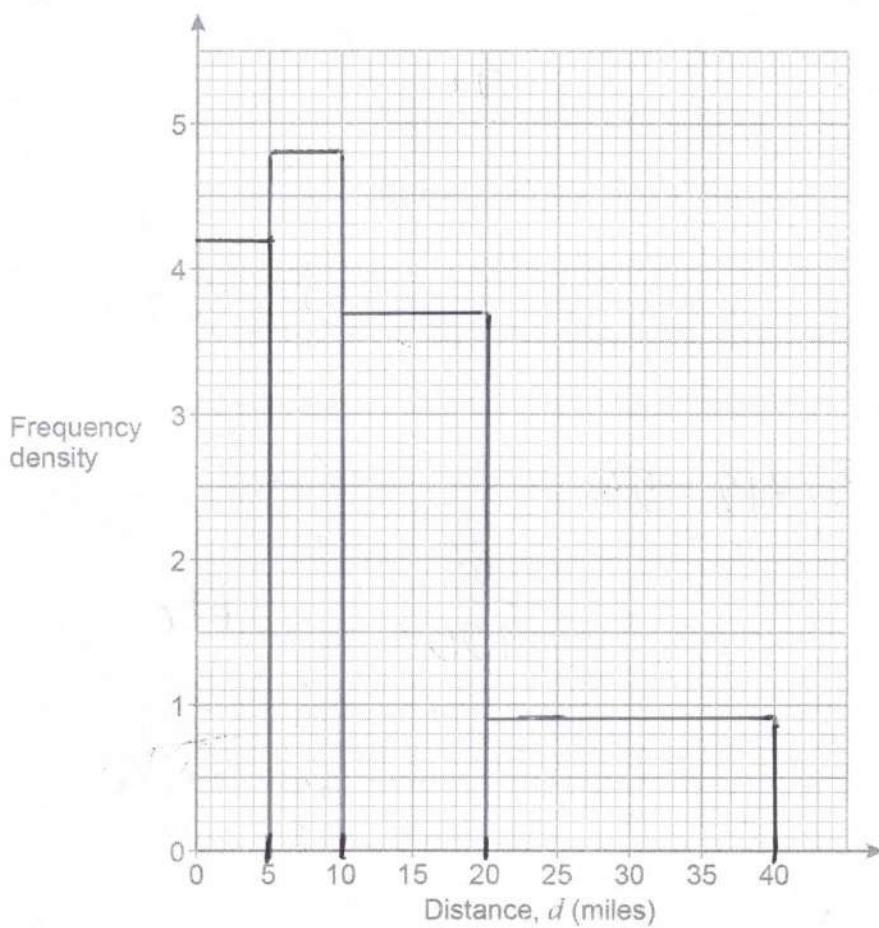
[1 mark]

$$37+18=55$$

Answer

$$\frac{55}{100}$$

etc



13 (c) The table is repeated.

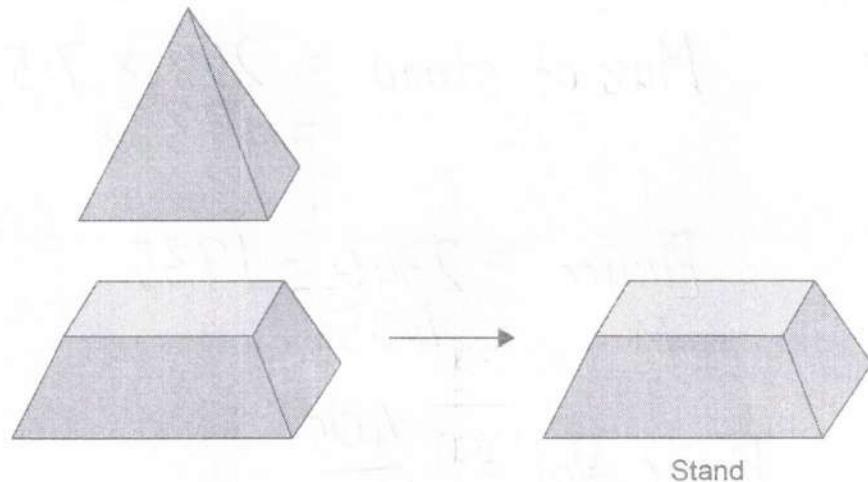
Width	Area	Height (fd)
Distance, d (miles)	Frequency	
5 $0 \leq d < 5$	21	4.2
5 $5 \leq d < 10$	24	4.8
10 $10 \leq d < 20$	37	3.7
20 $20 \leq d < 40$	18	0.9

Draw a histogram to represent the results.

[3 marks]

14 A solid trophy consists of a stand and a player.

Do not write outside the box.



Trophy

The stand is made by removing a small pyramid from a large pyramid.

Large pyramid Square base, edge 8 cm Perpendicular height 16 cm

Small pyramid Square base, edge 5 cm Perpendicular height 10 cm

$$\text{Volume of a pyramid} = \frac{1}{3} \times \text{area of base} \times \text{perpendicular height}$$

14 (a) Show that the volume of the stand is 258 cm^3

[2 marks]

$$V = \left(8^2 \times 16 \times \frac{1}{3} \right) - \left(5^2 \times 10 \times \frac{1}{3} \right)$$

$$= \frac{1024}{3} - \frac{250}{3}$$

$$= 258 \text{ cm}^3$$

14 (b) The trophy is made from a metal of density 7.5 grams per cm^3

The total mass of the trophy is 2340 grams.

Work out the volume of the player.

[2 marks]

$$\frac{M}{D} V$$

$$\text{Mass of stand} = 258 \times 7.5 \\ = 1935 \text{ g}$$

$$\text{Player} = 2340 - 1935 \\ M = 405 \text{ g}$$

$$\text{Player Vol} = \frac{405}{7.5}$$

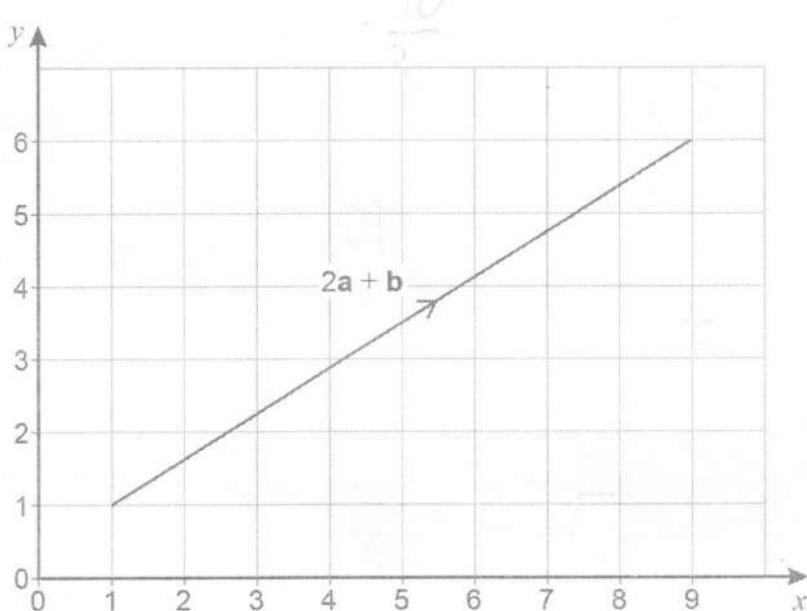
54

Answer

 cm^3

4

Turn over ►


1 3

IB/M/Nov23/8300/3H

15 $\mathbf{a} = \begin{pmatrix} m \\ 3 \end{pmatrix}$ $\mathbf{b} = \begin{pmatrix} -4 \\ p \end{pmatrix}$

Do not write outside the box

The diagram shows the vector $2\mathbf{a} + \mathbf{b}$

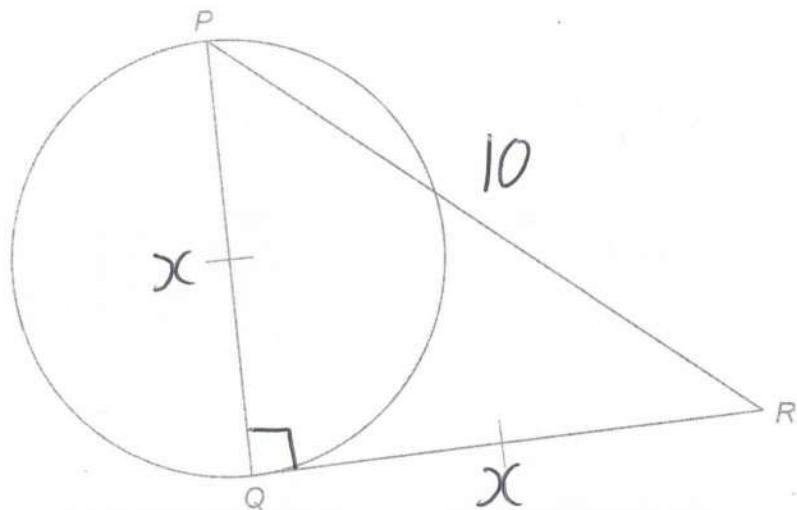
Work out the values of m and p .

[4 marks]

$$2 \begin{bmatrix} m \\ 3 \end{bmatrix} + \begin{bmatrix} -4 \\ p \end{bmatrix} = \begin{bmatrix} 8 \\ 5 \end{bmatrix}$$

$$\begin{array}{l|l} 2m - 4 = 8 & 6 + p = 5 \\ 2m = 12 & p = 5 - 6 \\ m = 6 & \end{array}$$

$$m = \underline{\hspace{2cm}} \quad p = \underline{\hspace{2cm}}$$


16

PQ is a diameter of a circle.

QR is a tangent to the circle.

$$PQ = QR$$

$$PR = 10 \text{ cm}$$

Not drawn
accuratelyWork out the **radius** of the circle.

Give your answer as a decimal.

[3 marks]

$$\begin{aligned} x^2 + x^2 &= 10^2 \\ 2x^2 &= 100 \\ x^2 &= 50 \\ x &= \sqrt{50} = 5\sqrt{2} \end{aligned}$$

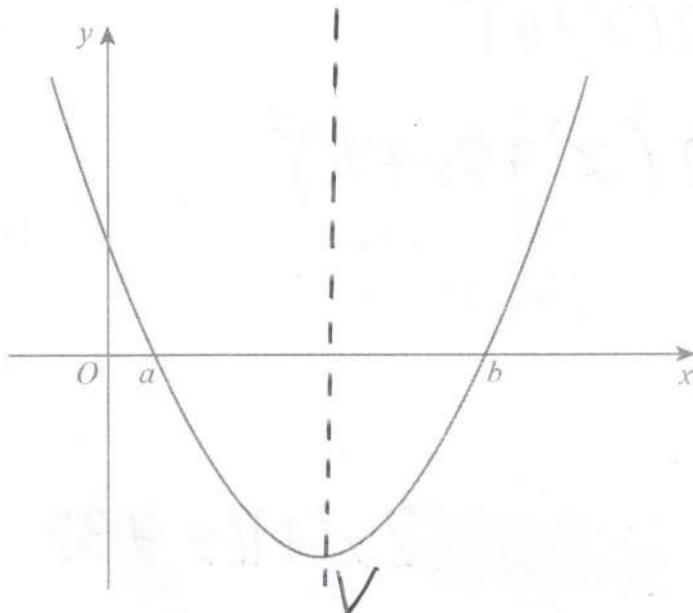
$$\text{radius} = 5\sqrt{2} \div 2 = 3.5355\dots$$

3.54

Answer _____ cm

7

Turn over ►



1 5

IB/M/Nov23/8300/3H

17 Here is a sketch of the quadratic graph $y = f(x)$
 The graph crosses the x -axis at $x = a$ and $x = b$

Do not write outside the box

Write an expression for the x -coordinate of the turning point.

[1 mark]

$$\frac{a+b}{2}$$

Answer

18

Simplify $\frac{2(x+4)}{(x+4)^2}$

Do not write
outside the
box

Give your answer in the form $ax^2 + bx + c$ where a, b and c are integers.

$$= 2(x+4)^2$$

[3 marks]

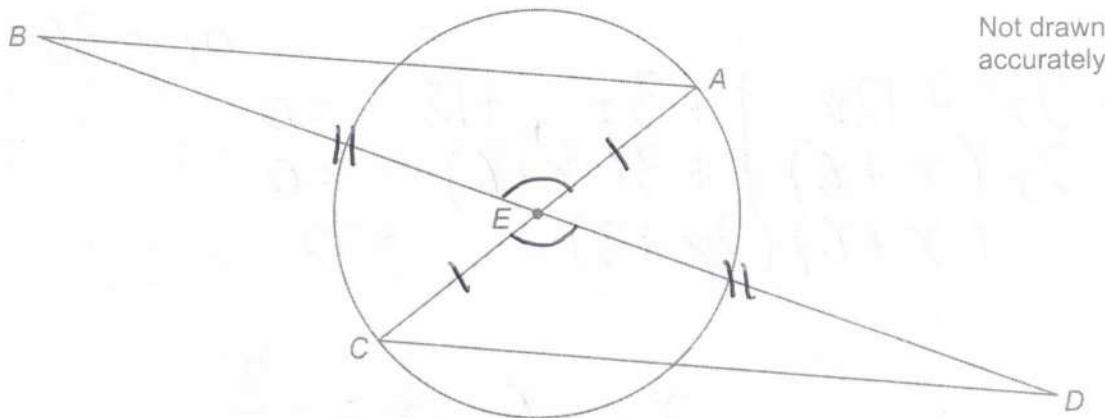
$$= 2(x^2 + 8x + 16)$$

Answer $2x^2 + 16x + 32$

Turn over for the next question

4

Turn over ►



1 7

IB/M/Nov23/8300/3H

19 AC is a diameter of a circle, centre E.

E is the midpoint of BD.

Prove that triangle ABE is congruent to triangle CDE.

[4 marks]

$AE = EC$ (both radii)

$\angle BEA = \angle CED$ (opposite angles are equal)

$BE = ED$ (E is the mid pt)

SAS hence congruent

20

Solve $2x(x + 10) = 5x - 18$

[4 marks]

Do not write
outside the
box

$$\begin{array}{l} 2x^2 + 20x = 5x - 18 \\ 2x^2 + 15x + 18 = 0 \end{array}$$

$$ac = 36$$

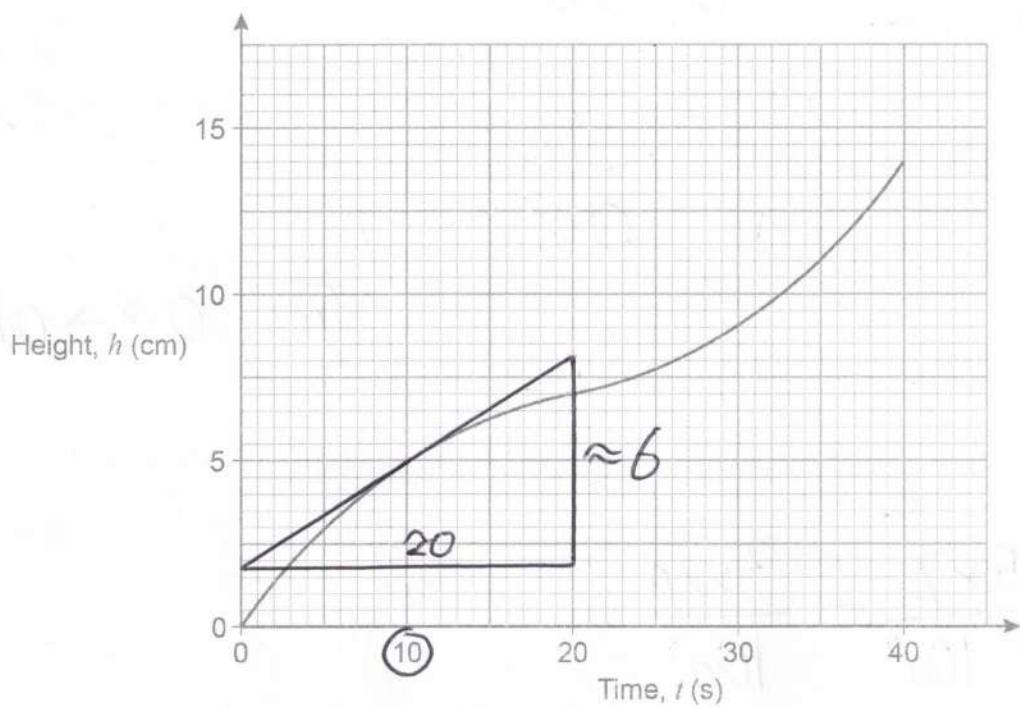
$$\begin{array}{l} 2x^2 + 12x \quad | + 3x + 18 = 0 \\ 2x(x + 6) \quad | + 3(x + 6) = 0 \\ (x + 6)(2x + 3) = 0 \end{array}$$

Answer $x = -6, x = -\frac{3}{2}$

Turn over for the next question

8

Turn over ►

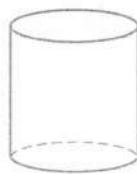

1 9

IB/M/Nov23/8300/3H

21

Water flows from a tap at a constant rate.

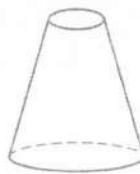
A container is filled with water from the tap in 40 seconds.

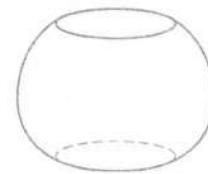

The graph shows the height, h centimetres, of the water after time, t seconds.

21 (a) The container is one of these shapes.

Circle the letter of the correct shape.

[1 mark]


A


B

C

D

21 (b) By drawing a tangent on the graph,
estimate the rate at which the height is increasing when $t = 10$

[2 marks]

$$6 \div 20$$

Answer

$$0.3$$

cm/s

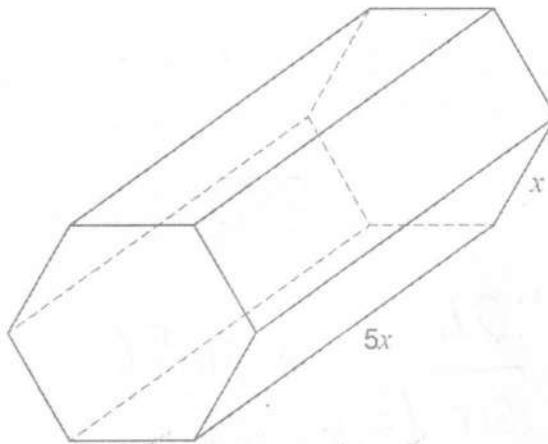
$$[\text{ms } 0.3 \rightarrow 0.4]$$

22 Write $\frac{7}{2a^2} - \frac{3}{5a}$ as a single fraction in its simplest form.

[2 marks]

$$\frac{5 \times 7}{10a^2} - \frac{3 \times 2a}{10a^2}$$

$$= \frac{35}{10a^2} - \frac{6a}{10a^2}$$


$$\frac{35 - 6a}{10a^2}$$

Answer

23 A chocolate box in the shape of a prism is being designed.
All lengths are in centimetres.

The cross section is a regular hexagon with side x
The length is $5x$

An expression for the area of the cross section, in cm^2 , is $\frac{3\sqrt{3}}{2}x^2$

The **total** surface area of the box must be less than 650 cm^2

Work out the largest possible **integer** value of x .

You **must** show your working.

$$\text{Surface Area} = 2\left(\frac{3\sqrt{3}}{2}\right)x^2 + 6(5x \times x)$$

[4 marks]

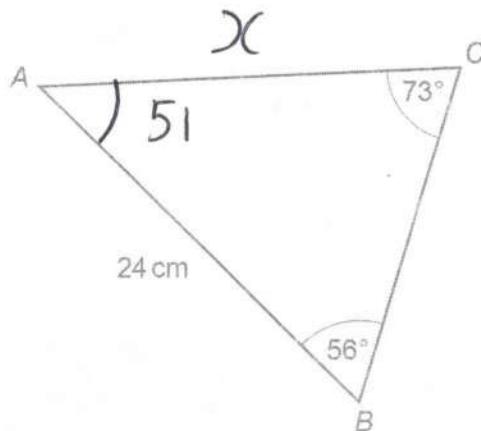
$$= 3\sqrt{3}x^2 + 30x^2 < 650$$

$$x^2(3\sqrt{3} + 30) < 650$$

$$x^2 < \frac{650}{3\sqrt{3} + 30}$$

$$x < 4.297\dots$$

Answer


4

24

Work out the area of triangle ABC.

[4 marks]

$$\frac{x}{\sin 56} = \frac{24}{\sin 73} \times \sin 56$$

$$x = 20.806\dots$$

$$\text{Area} = \frac{1}{2} \times 20.806\dots \times 24 \times \sin 51$$

$$= 194.0318\dots$$

Answer 194.0 cm^2

[MS 193.9 \rightarrow 194.1]

25

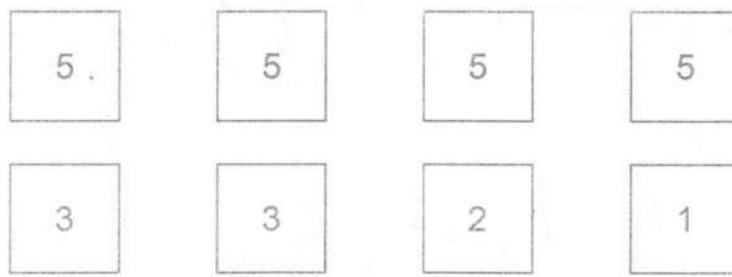
 a is three quarters of c

$$6b = 5c$$

$$\longrightarrow b = \frac{5}{6} c$$

Work out the ratio $a : b : c$ Give your answer in its simplest form, where a , b and c are integers.

[3 marks]


$$\begin{array}{c}
 a \quad : \quad b \quad : \quad c \\
 \hline
 3 \quad : \quad 5 \quad : \quad 4 \\
 \times 3 \quad \quad \quad \quad \quad \times 3 \\
 \hline
 10 \quad : \quad 12
 \end{array}$$

Answer 9 : 10 : 12

26

In a game, these numbered tiles are in a bag.

To play the game

Choose tiles at random one at a time and do not replace the tiles.

You win if at any stage the total of the numbers on your tiles is 10

Amber plays the game once.

Work out the probability that she wins.

$$\begin{aligned}
 \text{W} \rightarrow 5,5 &= \frac{4}{8} \times \frac{3}{7} = \frac{12}{56} & [4 \text{ marks}] \\
 \text{W} \rightarrow 5,3,2 &= 6 \times \left(\frac{4}{8} \times \frac{2}{7} \times \frac{1}{6} \right) = \frac{8}{56}
 \end{aligned}$$

$$\frac{12}{56} + \frac{8}{56}$$

Answer

$$\frac{5}{14}$$

OE

7

Turn over ►

2 5

IB/M/Nov23/8300/3H

27 (a) The graph of $y = x^3$ is translated to the graph of $y = (x - 2)^3$

Write down the translation vector.

→ 2

[1 mark]

Answer $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$

27 (b) The graph of $y = 5x + 4$ is reflected in the y -axis.

Write down the equation of the reflected graph.

" x " $x - 1$

[1 mark]

Answer $y = -5x + 4$

END OF QUESTIONS

2

