Paper: 1MA1	Paper: 1MA1/1H						
Question	Answer	Mark	Mark scheme	Additional guidance			
1	1080	M1	for method to write one number as a product of prime factors (condone one division error in method chosen), eg. one complete factor tree or 2, 2, 3, 3, 3 or 2, 2, 2, 3, 5 or for listing at least 5 multiples of either number (condone one error) or for any common multiple (\neq 1080), eg. 12960 (= 108 \times 120)	Accept first 5 multiples if all correct or one error in the first 6 multiples			
		M1	for method to write both numbers as a product of prime factors (condone a total of one division error) eg. two complete factor trees or 2, 2, 3, 3, 3 and 2, 2, 2, 3, 5 or lists of multiples of the two numbers, at least 5 of each, one of which includes 1080	For the list not containing 1080, accept first 5 correct multiples or one error in the first 6 multiples			
		A1	cao				
			SC: B2 for any product that would lead to 1080, eg. $2^3 \times 3^3 \times 5$ or $12 \times 9 \times 10$				

	Paper: 1MA1/1H						
Answer	Mark	Mark scheme	Additional guidance				
2 (supported)	P1 P1	for a process to find the number of children, eg. $60 - "30" - "10"$	$60 \div 3 = 20$ scores no marks				
	P1	for a start of a process to find the value of n , eg. ("20": "10") \div 5 or 20: 10 = 10: 5 or "20" \div "10"	Any ratio must come from correct processes to find the number of children and the number of men				
	A1	for 2 with supportive working	Award 0 marks for 2 with no correct supportive working				
			Award full marks for 2 : 1 given as a final answer from correct supportive working				
$2\frac{1}{3}$	M1	for either $\frac{7}{4}$ oe or $\frac{4}{3}$ oe					
	M1	for method to find the product, eg. $\frac{7\times4}{4\times3}$ or $\frac{21\times16}{12\times12}$ oe or for $\frac{28}{12}$ or $\frac{7}{3}$ oe					
	A1	for $2\frac{1}{3}$ or an equivalent mixed number					
perpendicular line constructed	C2	for a fully correct construction with all relevant arcs drawn	Perpendicular line segment between <i>P</i> and <i>CD</i> must be within guidelines Accept dotted lines				
	(C1	for a perpendicular line drawn from P to the line CD or all relevant arcs drawn)					
	(supported) $2\frac{1}{3}$ perpendicular line	$\begin{array}{c cccc} 2 & & P1 \\ & & P1 \\ & & P1 \\ & & P1 \\ & & & A1 \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$	[supported] P1 for a process to find the number of men, eg. $(60 \div 2) \div 3$ (= 10) [supported] P1 for a process to find the number of children, eg. $60 - "30" - "10"$ [e 20) P1 for a start of a process to find the value of n , eg. $("20" : "10") \div 5$ or $20 : 10 = 10 : 5$ or $"20" \div "10"$ A1 for either $\frac{7}{4}$ oe or $\frac{4}{3}$ oe M1 for method to find the product, eg. $\frac{7\times 4}{4\times 3}$ or $\frac{21\times 16}{12\times 12}$ oe or for $\frac{28}{12}$ or $\frac{7}{3}$ oe A1 for $2\frac{1}{3}$ or an equivalent mixed number [perpendicular line constructed] C2 for a fully correct construction with all relevant arcs drawn [C1] for a perpendicular line drawn from P to the line CD or all				

	Paper: 1MA1/1H						
Answer	Mark	Mark scheme	Additional guidance				
2 (supported)	P1 P1	for a process to find the number of children, eg. $60 - "30" - "10"$	$60 \div 3 = 20$ scores no marks				
	P1	for a start of a process to find the value of n , eg. ("20": "10") \div 5 or 20: 10 = 10: 5 or "20" \div "10"	Any ratio must come from correct processes to find the number of children and the number of men				
	A1	for 2 with supportive working	Award 0 marks for 2 with no correct supportive working				
			Award full marks for 2 : 1 given as a final answer from correct supportive working				
$2\frac{1}{3}$	M1	for either $\frac{7}{4}$ oe or $\frac{4}{3}$ oe					
	M1	for method to find the product, eg. $\frac{7\times4}{4\times3}$ or $\frac{21\times16}{12\times12}$ oe or for $\frac{28}{12}$ or $\frac{7}{3}$ oe					
	A1	for $2\frac{1}{3}$ or an equivalent mixed number					
perpendicular line constructed	C2	for a fully correct construction with all relevant arcs drawn	Perpendicular line segment between <i>P</i> and <i>CD</i> must be within guidelines Accept dotted lines				
	(C1	for a perpendicular line drawn from P to the line CD or all relevant arcs drawn)					
	(supported) $2\frac{1}{3}$ perpendicular line	$\begin{array}{c cccc} 2 & & P1 \\ & & P1 \\ & & P1 \\ & & P1 \\ & & & A1 \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$	[supported] P1 for a process to find the number of men, eg. $(60 \div 2) \div 3$ (= 10) [supported] P1 for a process to find the number of children, eg. $60 - "30" - "10"$ [e 20) P1 for a start of a process to find the value of n , eg. $("20" : "10") \div 5$ or $20 : 10 = 10 : 5$ or $"20" \div "10"$ A1 for either $\frac{7}{4}$ oe or $\frac{4}{3}$ oe M1 for method to find the product, eg. $\frac{7\times 4}{4\times 3}$ or $\frac{21\times 16}{12\times 12}$ oe or for $\frac{28}{12}$ or $\frac{7}{3}$ oe A1 for $2\frac{1}{3}$ or an equivalent mixed number [perpendicular line constructed] C2 for a fully correct construction with all relevant arcs drawn [C1] for a perpendicular line drawn from P to the line CD or all				

Paper: 1MA1	/1H			
Question	Answer	Mark	Mark scheme	Additional guidance
5	93	M1	for method to find angle ACB , eg. $180 - 75 - 51$ (= 54)	Angles may be shown on diagram but must not be ambiguous eg. M0 for angle of 54° shown in the wrong place
		IVII	(dep M1) for method to use the ratio, eg. "54" \div (2 + 1) (= 18)	
		M1	for complete method, eg. $180 - 51 - "18" \times 2$ or $75 + "18"$ oe	
		Al	cao	
6	No (supported)	P1	for process to find total weight of the 4 red bricks, eg. $5 \times 4 (= 20)$ or for process to find total weight of the 5 blue bricks eg. $9 \times 5 (= 45)$ for process to find total weight of all 10 bricks, eg. "20" + "45" + 6 (= 71)	May be seen next to statements 20 must be clearly referenced to the red bricks. 5 + 9 + 6 = 20 gets no marks
		C1	No with correct supporting evidence Acceptable examples No, it is 7.1 She is wrong, it is 0.1 more No, (the total weight is) 71 not 70 Not acceptable examples Yes No, it is 71	Candidates working in grams will need to give 7100 and 7000 for example as comparable figures

Paper	Paper: 1MA1/1H						
Quest	ion	Answer	Mark	Mark scheme	Additional guidance		
7	(a)	p^{10}	B1	cao			
	(b)	$2x^4y^2$	M1	for any two of $12 \div 6$ (= 2), x^{7-3} (= x^4), y^{3-1} (= y^2) in a single product or written as a fraction with complete and correct cancelling of at least two terms			
			A1	cao			
8	(i)	Distance in the range 20 to 23	P1	for a process to draw a bearing of 070°, eg. a line drawn 70° from the North line at <i>P</i>	Accept a line of any length as long as the intention is clear.		
	(ii)	Bearing in the range 317 to 330	P1	for a process to work out the distance PQ , eg. 12×1.5 (= 18)			
		317 16 330	P1	(dep previous P1) for the process to use the given scale, eg. "18" ÷ 4 (= 4.5 cm)	Award P3 for Q shown in the correct place on the diagram. 4.5 scores 2 marks provided there is a link to 12 × 1.5 (= 18)		
			A1	(dep P3) for distance in the range 20 to 23	Award no marks if no supportive processes		
			A1	(dep P3) for bearing in the range 317 to 330	Award no marks if no supportive processes		
					Award A0A0 if Q is not in the correct place		

Paper	Paper: 1MA1/1H						
Quest		Answer	Mark	Mark scheme	Additional guidance		
9	(a)	21.6	M1	for a method using distance = speed × time, eg. $72 \times \frac{18}{60}$ or 7.2 km in 6 minutes, so 7.2 × 3 oe partitioning method	Accept 72 × 18		
			A1	for 21.6 oe			
	(b)	No (supported)	M1	for a method to convert 20 m/s to km/h or 72 km/h to m/s, eg. $20 \times \frac{3600}{1000} (= 72)$ or $72 \times \frac{1000}{3600} (= 20)$	Accept methods to convert both speeds to km/s or m/h		
			C1	for No since $72 \text{ km/h} = 20 \text{ m/s}$ oe			
10	(a)	cf graph through (40, 5), (60, 25), (80, 35), (100, 38) and (120, 40)	C2	for a complete and accurate cf graph	May be a cumulative frequency curve or a cumulative frequency polygon Ignore any graph drawn to the left of the first point If histograms drawn, plots must be identified		
			(C1	for at least 4 or 5 cf values plotted correctly) SC: B1 for 4 or 5 points plotted not at end but consistently within each interval and joined provided no gradient is negative			
	(b)	answer in range 21 to 28	M1 A1	for UQ in the range 66 to 70 or LQ in the range 42 to 46 or ft their cf graph for answer in range 21 to 28 or ft their cf graph			
	(c)	answer in the range $\frac{19}{40}$ to $\frac{24}{40}$	M1	for finding the difference between readings taken from the cf axis at points from a mark of 50 and a mark of 90 or ft their graph (if possible)	Their graph must be a cf graph		
			A1	for an answer in the range $\frac{19}{40}$ to $\frac{24}{40}$ or ft their cf graph	Accept any equivalent fraction, decimal from 0.475 to 0.6 or percentage from 47.5% – 60%		

Paper: 1MA1	Paper: 1MA1/1H						
Question	Answer	Mark	Mark scheme	Additional guidance			
11	72	M1	for $\frac{5}{30} = \frac{12}{p}$ oe, eg $\frac{12}{p} \times 30 = 5$ or $12 \div \frac{5}{30}$ or $5:30 = 12:p$ or 1 in $6(30 \div 5)$ counters are yellow, so $12 \times \text{``6''}$ or using equivalent ratios to $5:30$, eg. $2:12$ and $10:60$ and adding to give $2+10:12+60$				
		A1	cao				
12	Mistake identified	C1	for a correct mistake identified Acceptable examples all three terms should be multiplied by 2 and not just two of them the 5 should be multiplied by 2 it should be $2 \times T = q + 2 \times 5$ should subtract 5 first (before multiplying by 2) Not acceptable examples Should remove the 5 first $2 \times T$ should be $2T$ should have got rid of the denominator	Accept answers showing a correct first step			
13 (a)	$\frac{17x+2}{3x(x+1)}$	M1	for a correct common denominator with at least one correct numerator eg. $\frac{5 \times 3x}{3x(x+1)} + \frac{2(x+1)}{3x(x+1)}$ for a single simplified fraction, eg. $\frac{17x+2}{3x(x+1)}$ or equivalent eg. $\frac{17x+2}{3x^2+3x}$	$\frac{15x+2(x+1)}{3x(x+1)}$ gets M1 only			
(b)	(x+y)(x+y+3)	B1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				

Paper: 1MA1	Paper: 1MA1/1H						
Question	Answer	Mark	Mark scheme	Additional guidance			
14	5	P1	for process to find the area of the triangle, eg. $0.5 \times (x + 4)(x - 2)$ oe OR for process to find the area of rectangle and 27.5×2 , eg. $(x + 4)(x - 2)$ and 55	Trial and improvement methods must be fully correct identifying the value of <i>x</i> as 7 (3 marks) or the shortest side as 5 (4 marks)			
		P1	(dep P1) for process to expand the brackets and derive a quadratic equation, eg. $x^2 + 4x - 2x - 8 = 55$ or $0.5(x^2 + 4x - 2x - 8) = 27.5$ oe				
		P1	(dep P2) for complete process to solve the quadratic equation $x^2 + 2x - 63 = 0$ eg $(x - 7)(x + 9)$ (= 0) or $\frac{-2 \pm \sqrt{2^2 - 4 \times 1 \times -63}}{2 \times 1}$ or $(x + 1)^2 - 1 - 63$ (= 0)				
		A1	cao	An answer of 5 with no supportive working gets no marks			
			SC: B1 for $x^2 + 4x - 2x - 8 = 27.5$				

Paper: 1MA1	Paper: 1MA1/1H					
Question	Answer	Mark	Mark scheme	Additional guidance		
15	$\frac{414}{990}$	M1	for $(x =) 0.41818$ or $(10x =) 4.\dot{1}\dot{8}$ or 4.1818 or $(100x =) 41.\dot{8}\dot{1}$ or 41.818 or $(1000x =) 418.\dot{1}\dot{8}$ or 418.18			
		M1	for using two recurring decimals with a terminating decimal difference, eg. $(1000x - 10x =) 418.\dot{1}\dot{8} - 4.\dot{1}\dot{8}$ or $418.18 4.1818 (= 414)$	Accept $(100x - x =) 41.\dot{8}\dot{1} - 0.4\dot{1}\dot{8}$ or $41.818 0.41818 (= 41.4)$		
		A1	for $\frac{414}{990}$ oe, eg $\frac{23}{55}$	$\frac{41.4}{99}$ must be simplified to gain the accuracy mark		
16 (a)	2√11	M1	for method to multiply numerator and denominator by $\sqrt{11}$ or a multiple of $\sqrt{11}$, eg $\frac{22}{\sqrt{11}} \times \frac{\sqrt{11}}{\sqrt{11}}$			
		A1	for $2\sqrt{11}$			
(b)	$\frac{6+\sqrt{3}}{11}$	M1	for method to multiply numerator and denominator by $2\sqrt{3} + 1$ or a multiple of $2\sqrt{3} + 1$, eg $\frac{\sqrt{3}}{2\sqrt{3} - 1} \times \frac{2\sqrt{3} + 1}{2\sqrt{3} + 1}$			
		M1	(dep) for $\sqrt{3} \times 2\sqrt{3} = 6$ or $2\sqrt{3} \times 2\sqrt{3} = 12$			
		A1	for $\frac{6+\sqrt{3}}{11}$ (accept $a=6$ and $b=11$)			

Paper: 1MA1	Paper: 1MA1/1H					
Question	Answer	Mark	Mark scheme	Additional guidance		
17	4	P1	for process to find ratio of corresponding lengths, eg. $\sqrt{4}$: $\sqrt{9}$ (= 2 : 3)			
		P1	for process to find ratio of volumes, eg "2" ³ : "3" ³ (= 8: 27)			
		P1	for "27" ÷ "8" (= 3.375)	This may be seen by checking their volume, eg. "8" \times 4 (= 32) and "8" \times 3 (= 24)		
		A1	for rounding to give an answer of 4 from correct working	An answer of 4 with no supportive working gets no marks		

Paper: 1MA1	Paper: 1MA1/1H						
Question	Answer	Mark	Mark scheme	Additional guidance			
18 (a)	Shown	C1	for $f^{-1}(x) = \sqrt[3]{\frac{x+4}{2}}$ OR for $2x^3 - 4 = 50$ OR for substituting $x = 3$ to find $f(3)$				
(b)	x = -1 and $x = 2.5$	P1	for substituting $x = 50$ to show the result giving $f^{-1}(50) = 3$ OR solving for x to give $x = 3$ OR for showing that $f(3) = 50$ for $hg(x) = (x + 2)^2$				
(0)	x = -1 and $x = 2.5$		$\lim_{x \to \infty} x = x + z $				
		P1	(dep) for start to a process to derive a quadratic equation eg. $x^2 + 4x + 4 = 3x^2 + x - 1$	$(x+2)^2$ must be correctly expanded			
		P1	for a process to solve the quadratic equation $2x^2 - 3x - 5 = 0$ eg $(2x - 5)(x + 1)$ (= 0) or $\frac{3 \pm \sqrt{(-3)^2 - 4 \times 2 \times -5}}{2 \times 2}$ or $2\left[(x - \frac{3}{4})^2 - \frac{9}{16} - \frac{5}{2}\right]$ (= 0)				
		A1	for $x = -1$ and $x = 2.5$	2.5 or $2\frac{1}{2}$ or $\frac{5}{2}$ acceptable			
19	$\frac{3}{4}$ oe	P1	for a first step to converting to a common base with one correct conversion, eg. $9^{-\frac{1}{2}} = 3^{-1}$ or $\frac{1}{3}$ or $27^{\frac{1}{4}} = 3^{\frac{3}{4}}$ oe	$9^{-\frac{1}{2}} = 3^{-1}$ (or $\frac{1}{3}$) oe or $27^{\frac{1}{4}} = 3^{\frac{3}{4}}$ oe seen alone gets the P1			
		P1	(dep) for $3^{-1} = 3^{\frac{3}{4}} \div 3^{x+1}$ oe				
		A1	cao				

Paper: 1MA1/1H							
Question	Answer	Mark	Mark scheme	Additional guidance			
20 (a)	graph	C2	for a translation of the graph by the vector $\begin{pmatrix} -1 \\ -3 \end{pmatrix}$	Condone graph of $y = f(-x)$ also being drawn on the grid			
		(C1	for a translation of the graph by the vector $\begin{pmatrix} -1 \\ b \end{pmatrix}$ where $b \neq -3$ or $\begin{pmatrix} a \\ -3 \end{pmatrix}$ where $a \neq -1$	Correct vector gets 1 mark			
			or for a translation by the vector $\begin{pmatrix} -1 \\ -3 \end{pmatrix}$ of 3 or 4 critical points)				
(b)	2, 1	B1	cao				
21	Sketch graph with TP at (2, -13) and intercepts at $(0, -5), (2+\sqrt{\frac{13}{2}}, 0)$ and $(2-\sqrt{\frac{13}{2}}, 0)$	B1 M1 M1 B1 C1	for a parabola drawn with intercept at the point $(0, -5)$ for the start of a method to find the roots of $y = 0$, eg. $2(x-2)^2 - 13$ (= 0) oe or $(x =)\frac{8 \pm \sqrt{(-8)^2 - 4 \times 2 \times -5}}{2 \times 2}$ (dep) for method to find the roots, eg. $2 \pm \sqrt{\frac{13}{2}}$ oe for turning point at $(2, -13)$ for a fully correct parabola drawn with turning point at $(2, -13)$ and intercepts at $(0, -5)$, $(2 + \sqrt{\frac{13}{2}}, 0)$ oe and $(2 - \sqrt{\frac{13}{2}}, 0)$ oe clearly shown	Turning point may be just seen and labelled on the sketch			

Paper: 1MA1/1H							
Question	Answer	Mark	Mark scheme	Additional guidance			
22	Proof	C1	for one correct pair of equal angles with correct reason from: angle ACB = angle ADB , (angles in the same segment are equal) angle DBC = angle DAC , (angles in the same segment are equal) angle ABD = angle ACD , (angles in the same segment are equal)	Underlined words need to be shown; reasons need to be linked to their statement(s)			
			or for recognising all angles of 60 in triangle <i>AED</i> and in triangle <i>CEB</i>)	Pairs of equal angles may be just shown on the diagram			
		C1 C1 C1	for one identity, with reason(s), from the following list of alternatives: Alternatives: a complete method to show that angle $ACB = \text{angle }DBC$ (= 60), or BC being common to both triangles or $DB = DE + EB = AE + EC = AC$ (sides of an <u>equilateral triangle</u> are equal) or angle $ABC = 60 + \text{angle }ABD = 60 + \text{angle }ACD = \text{angle }DCB$ (angles in the <u>same segment</u> are equal) or angle $BDC = \text{angle }CAB$ (angles in the <u>same segment</u> are equal) for a second identity, with reason(s), from the alternatives above for concluding the proof with a third identity, with reason(s), from the alternatives above, together with the condition for congruency, ASA or SAS or AAS				