

Answer ALL TWENTY ONE questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

1 (a) Simplify $g^6 \times g^4$

$$6+4$$

$$g^{10}$$

(1)

(b) Simplify $k^{10} \div k^3$

$$10-3$$

$$k^7$$

(1)

(c) Simplify $(3cd^4)^2$

$$3^2 = 9 \quad / \quad 1 \times 2 \quad / \quad d^{4 \times 2}$$

$$9c^2d^8$$

(2)

(d) Solve the inequality $4x + 7 > 2$

$$4x > -5$$

$$x > -\frac{5}{4}$$

$$x > -1.25$$

(2)

(Total for Question 1 is 6 marks)

P 6 2 6 5 7 A 0 3 2 4

2 The table shows information about the lengths of time, in minutes, 120 customers spent in a supermarket.

Length of time (L minutes)	Frequency
$20 < L \leq 30$	6
$30 < L \leq 40$	26
$40 < L \leq 50$	31
$50 < L \leq 60$	40
$60 < L \leq 70$	17

$$\begin{array}{r}
 \times 25 = 150 \\
 \times 35 = 910 \\
 \times 45 = 1395 \\
 \times 55 = 2200 \\
 \times 65 = 1105 \\
 \hline
 5760
 \end{array}$$

(a) Write down the modal class.

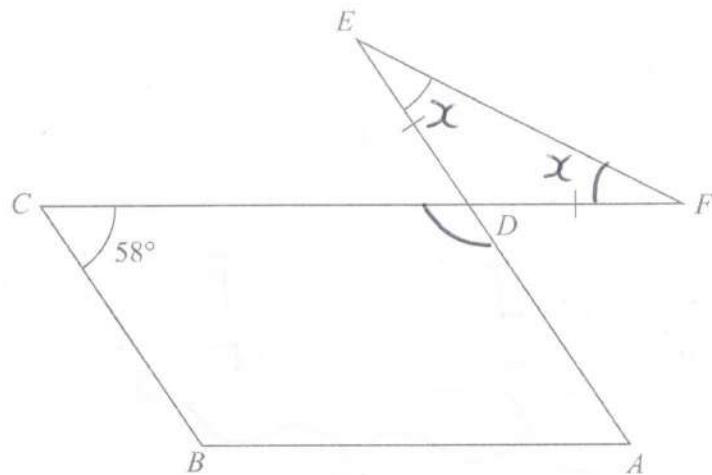
$50 < L \leq 60$

(1)

(b) Work out an estimate for the mean length of time spent by the 120 customers in the supermarket.

$$\begin{array}{r}
 5760 \\
 \hline
 120
 \end{array}$$

48


minutes

(4)

(Total for Question 2 is 5 marks)

3

Diagram NOT
accurately drawn

The diagram shows a parallelogram $ABCD$ and an isosceles triangle DEF in which $DE = DF$

CDF and ADE are straight lines.

$\text{Angle } BCD = 58^\circ$

Work out the size of angle DEF .

Give a reason for each stage of your working.

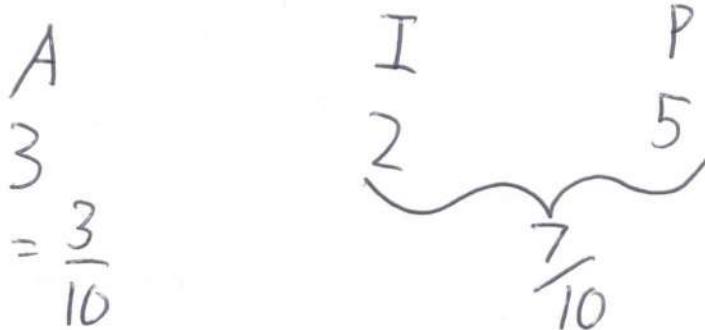
$$\angle CDA = 122 \quad (\text{co-interior angles sum to } 180)$$

$$\angle EDF = 122 \quad (\text{opposite angles are equal})$$

$$\begin{aligned} \angle DEF &= \frac{180 - 122}{2} && (\text{base angles of an isosceles triangle are equal}) \\ &= 29 \end{aligned}$$

29

(Total for Question 3 is 5 marks)


P 6 2 6 5 7 A 0 5 2 4

4 Andreas, Isla and Paulo share some money in the ratios 3 : 2 : 5

The **total** amount of money that Isla and Paulo receive is £76 more than the amount of money that Andreas receives.

Andreas buys a video game for £48.50 with some of his share of the money.

Work out how much money Andreas has left from his share of the money when he has bought the video game.

$$\text{Difference} = \frac{4}{10} = 76$$

$$\text{so } \frac{1}{10} = 19$$

$$A = \frac{3}{10} = 3 \times 19 = 57$$

$$57 - 48.50$$

£ 8.50

(Total for Question 4 is 4 marks)

5 Himari's annual salary is 3 130 000 Japanese Yen (JPY).
She gets a salary increase of 4%

(a) Work out Himari's salary after this increase.

$$3130000 \times 1.04$$

$$3255200$$

JPY

(3)

Kaito bought a car.

The value of the car when Kaito bought it was 750 000 JPY.

At the end of each year, the value of his car had depreciated by 15%

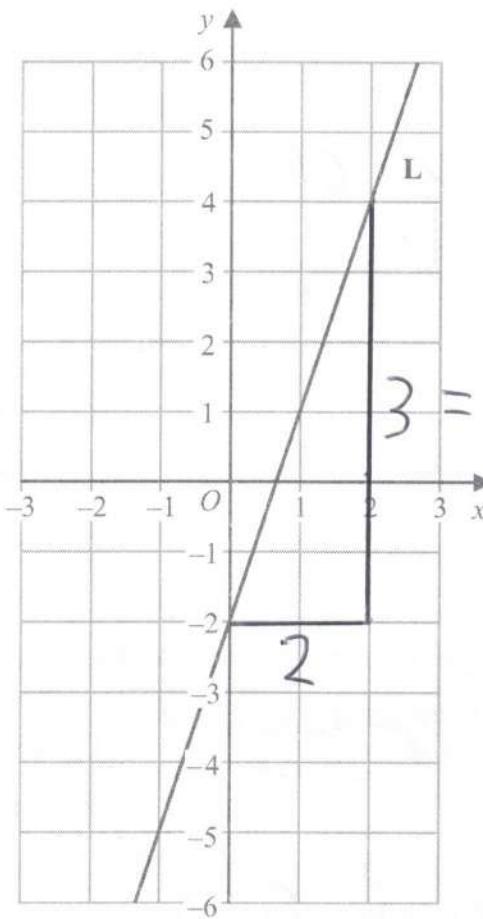
(b) Work out the value of Kaito's car at the end of 3 years.

Give your answer correct to the nearest JPY.

$$750\ 000 \times 0.85^3$$

$$= 460593.75$$

$$460594$$


JPY

(3)

(Total for Question 5 is 6 marks)

6 The line L is shown on the grid.

$$3 = \frac{6}{2}, \quad m=3$$

$$c = -2$$

Find an equation for L.

$$y = 3x - 2$$

(Total for Question 6 is 2 marks)

7 The diagram shows a right-angled triangle.

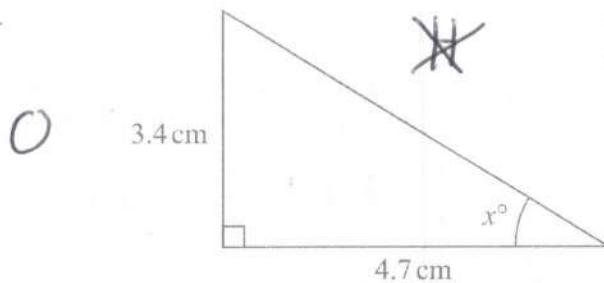
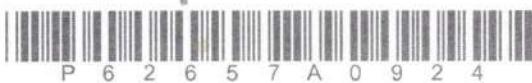


Diagram NOT
accurately drawn

Calculate the value of x .
Give your answer correct to one decimal place.

(T) A


$$x = \tan^{-1}\left(\frac{3.4}{4.7}\right)$$

$$\therefore 35.882\dots$$

$$35.9$$

$x = \dots$

(Total for Question 7 is 3 marks)

8 The diagram shows an isosceles triangle.

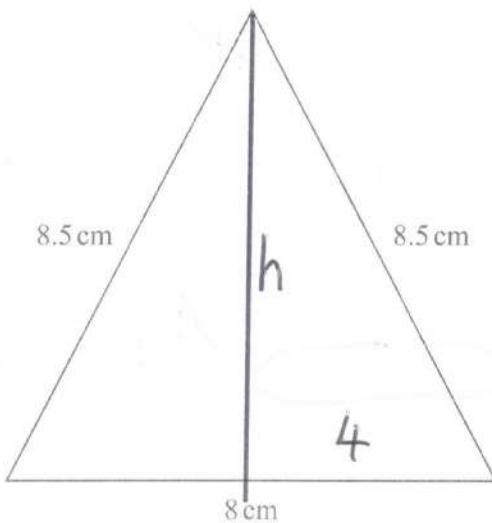


Diagram NOT
accurately drawn

Work out the area of the triangle.

$$h = \sqrt{8.5^2 - 4^2} = 7.5$$

$$A = \frac{1}{2} \times b \times h$$

$$= \frac{1}{2} \times 8 \times 7.5$$

30

cm²

(Total for Question 8 is 4 marks)

9 The diagram shows a solid cylinder with radius 3 m.

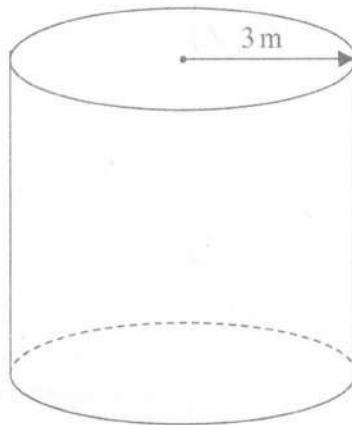


Diagram **NOT**
accurately drawn

The volume of the cylinder is $72\pi \text{ m}^3$

Calculate the **total** surface area of the cylinder.

Give your answer correct to 3 significant figures.

$$72\pi = \pi \times 3^2 \times h$$

$$h = 8$$

$$SA = \boxed{\quad} + 2 \times 0$$

$$= (2\pi \times 3 \times 8) + (2 \times \pi \times 3^2)$$

$$= 66\pi$$

$$= 207.34\ldots$$

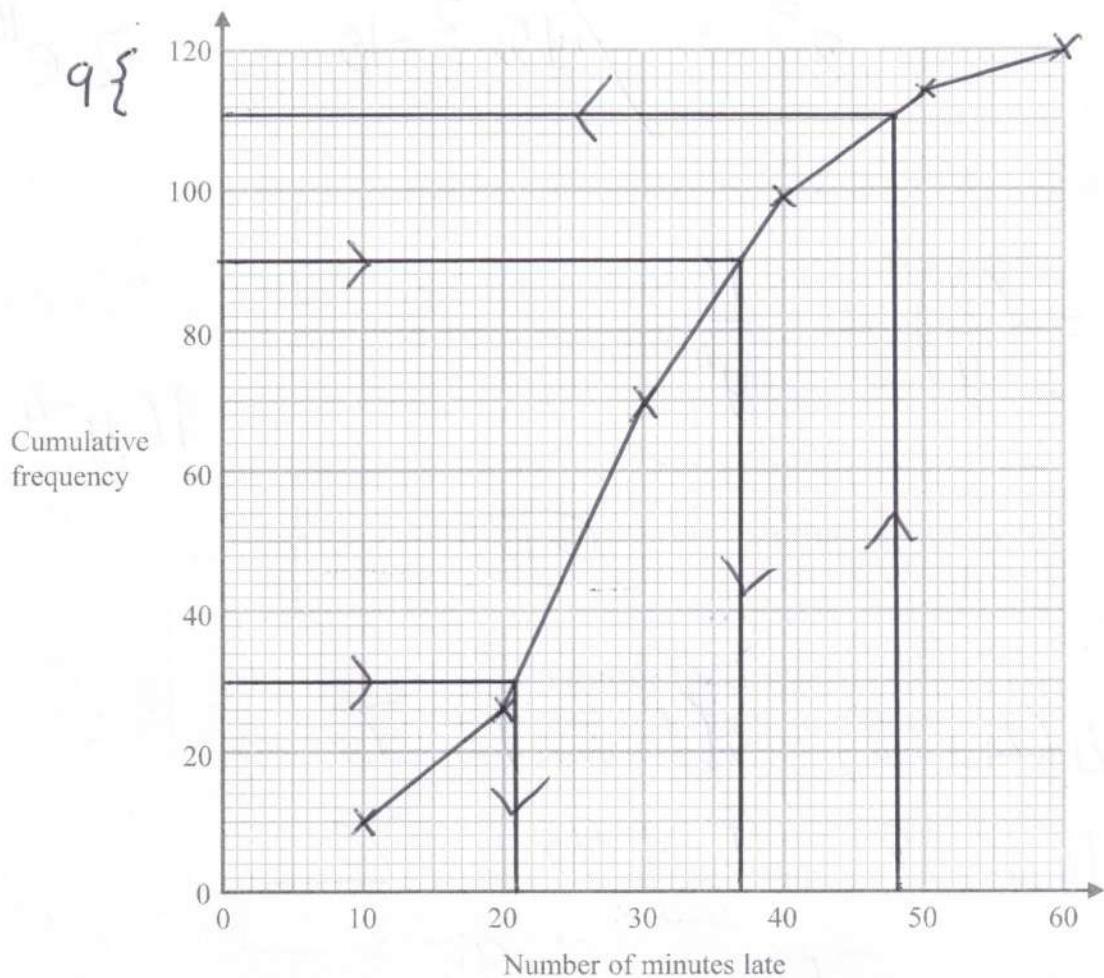
207

m^2

(Total for Question 9 is 5 marks)

10 The table shows information about the number of minutes each of 120 buses was late last Monday.

Number of minutes late (L)	Frequency
$0 < L \leq 10$	10
$10 < L \leq 20$	16
$20 < L \leq 30$	44
$30 < L \leq 40$	29
$40 < L \leq 50$	15
$50 < L \leq 60$	6


(a) Complete the cumulative frequency table below.

Number of minutes late (L)	Cumulative frequency
$0 < L \leq 10$	10
$0 < L \leq 20$	26
$0 < L \leq 30$	70
$0 < L \leq 40$	99
$0 < L \leq 50$	114
$0 < L \leq 60$	120

(1)

(b) On the grid, draw a cumulative frequency graph for your table.

(2)

(c) Use your graph to find an estimate for the interquartile range.

$37 - 21$
 $[ms: 14 \rightarrow 18]$ 16 minutes
 (2)

(d) Use your graph to find an estimate for the number of buses that were more than 48 minutes late last Monday.

9

(2)

(Total for Question 10 is 7 marks)

11 (a) Simplify fully $(8e^{15})^{\frac{2}{3}}$

$$8^{\frac{2}{3}} = 4 \quad / 15 \times \frac{2}{3} = 10$$

$$4 e^{10}$$

(2)

(b) Express $\left(\frac{y}{2}\right)^{-4}$ in the form ay^n where a and n are integers.

$$= \left(\frac{2}{y}\right)^4 = \frac{16}{y^4}$$

$$16y^{-4}$$

(2)

(c) Solve $\frac{4x-2}{3} - \frac{5-3x}{4} = 6$

(x12)

Show clear algebraic working.

$$4(4x-2) - 3(5-3x) = 72$$

$$16x - 8 - 15 + 9x = 72$$

$$25x = 95$$

$$x = \frac{95}{25} = \frac{19}{5}$$

$$3.8$$

 $x = \dots$
(4)

y

(Total for Question 11 is 8 marks)

12 Given that $\frac{3^x}{9^{3x}} = 81$

find the value of x .

Show clear algebraic working.

$$\frac{3^x}{(3^2)^{3x}} = 3^4$$

$$\frac{3^x}{3^{6x}} = 3^4$$

$$3^{-5x} = 3^4$$

$$\text{so } -5x = 4$$

$$x = -\frac{4}{5}$$

$$x = -0.8$$

(Total for Question 12 is 3 marks)

13 Use algebra to show that $0.\dot{6}8\dot{1} = \frac{15}{22}$

$$x = 0.\dot{6}8\dot{1}$$

$$10x = 6.\dot{8}\dot{1}$$

$$1000x = 681.81$$

$$\underline{990x = 675}$$

$$x = \frac{675}{990}$$

$$= \frac{15}{22}$$

(Total for Question 13 is 2 marks)

P 6 2 6 5 7 A 0 1 5 2 4

14 $\mathcal{E} = \{\text{integers } x \text{ such that } 10 \leq x \leq 25\}$

$$A = \{x : x < 18\}$$

$$B = \{x : 13 \leq x < 22\}$$

(a) Write down $n(A)$

10, 11, 17

8

(1)

(b) List the members of the set $(A \cup B)'$

$(A \cup B) = \text{all from}$
 $10 \rightarrow 21$
inclusive

22, 23, 24, 25

(2)

(c) List the members of the set $A' \cap B$

$A' = 18, 19, 20, 21, 22, 23, 24, 25$

$B = 13, 14, 15, 16, 17, 18, 19, 20, 21$

$A' \cap B = 18, 19, 20, 21$

(2)

$C \subset A, C \subset B$ and $n(C) = 5$

(d) List the members of the set C

13, 14, 15, 16, 17

(1)

(Total for Question 14 is 6 marks)

15 Make x the subject of $y = \frac{5-2x}{x+3}$

$$y(x+3) = 5-2x$$

$$yx + 3y = 5-2x$$

$$yx + 2x = 5-3y$$

$$x(y+2) = 5-3y$$

$$x = \frac{5-3y}{y+2}$$

(Total for Question 15 is 4 marks)

P 6 2 6 5 7 A 0 1 7 2 4

16 Solve the simultaneous equations

$$3xy - y^2 = 8$$

$$x - 2y = 1$$

$$x = 1 + 2y$$

Show clear algebraic working.

$$3y(1+2y) - y^2 = 8$$

$$3y + 6y^2 - y^2 = 8$$

$$5y^2 + 3y - 8 = 0$$

$$(5y + 8)(y - 1) = 0$$

$$y = -\frac{8}{5}$$

$$y = 1$$

$$x = 1 + 2\left(-\frac{8}{5}\right)$$

$$x = 1 + 2(1)$$

$$= -\frac{11}{5}$$

$$= 3$$

$$x = 3, y = 1, \quad x = -\frac{11}{5}, y = -\frac{8}{5}$$

(Total for Question 16 is 5 marks)

17 The diagram shows a rectangle.

So $x > 2$

$\leftarrow (2x - 4) \text{ cm} \rightarrow$

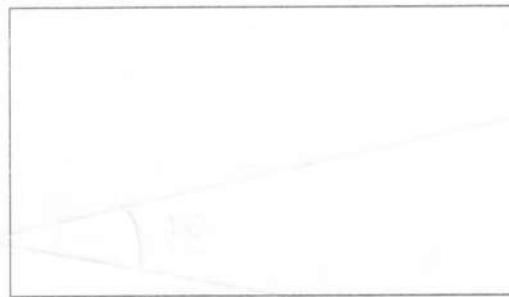
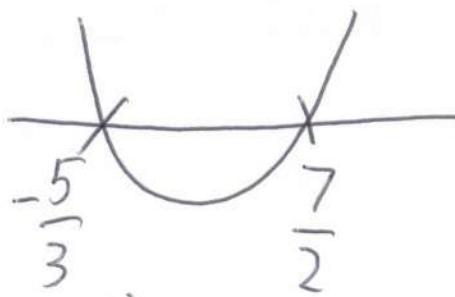


Diagram NOT accurately drawn

The area of the rectangle is $A \text{ cm}^2$

Given that $A < 3x + 27$


find the range of possible values for x .

$$(2x - 4)(3x + 2) < 3x + 27$$

$$6x^2 - 8 - 8x - 3x - 27 < 0$$

$$6x^2 - 11x - 35 < 0$$

$$(2x - 7)(3x + 5) < 0$$

(reject)

$$2 < x < \frac{7}{2}$$

(Total for Question 17 is 5 marks)

18 The diagram shows cuboid $ABCDEFGH$.

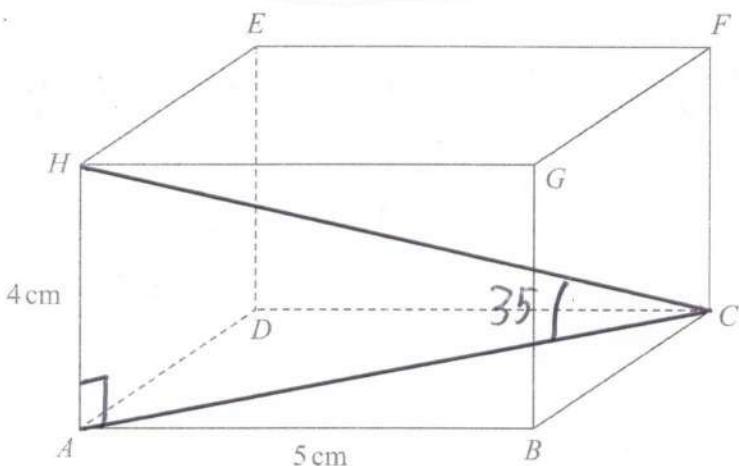


Diagram **NOT**
accurately drawn

$$AB = 5 \text{ cm}$$

$$AH = 4 \text{ cm}$$

The size of the angle between CH and the plane $ABCD$ is 35°

Calculate the volume of the cuboid.

Give your answer correct to 3 significant figures.

$$T^{\circ} \textcircled{A} \quad AC = \frac{4}{\tan 35} = 5.712\ldots$$

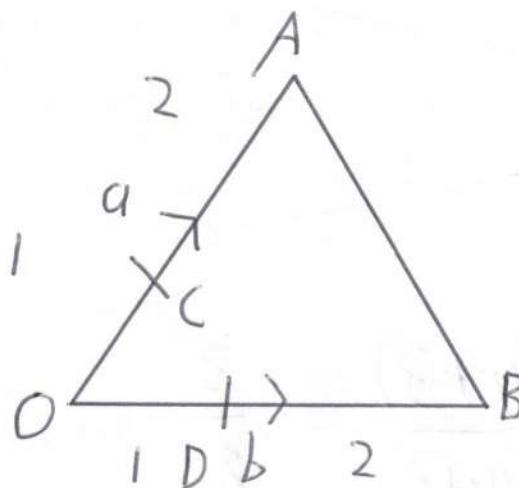
$$BC = \sqrt{5.712^2 - 5^2} = 2.7629\ldots$$

$$V = 5 \times 4 \times 2.7629 \\ = 55.25\ldots$$

55.3

cm³

(Total for Question 18 is 5 marks)



19 OAB is a triangle.

$$\overrightarrow{OA} = \mathbf{a} \quad \overrightarrow{OB} = \mathbf{b}$$

The point C lies on OA such that $OC : CA = 1 : 2$
 The point D lies on OB such that $OD : DB = 1 : 2$

Using a vector method, prove that $ABDC$ is a trapezium.

$$AB = -\mathbf{a} + \mathbf{b}$$

$$\begin{aligned} CD &= -\frac{1}{3}\mathbf{a} + \frac{1}{3}\mathbf{b} \\ &= \frac{1}{3}(-\mathbf{a} + \mathbf{b}) \end{aligned}$$

$\therefore AB$ and CD are parallel
 hence $ABDC$ is a trapezium.

(Total for Question 19 is 3 marks)

20 A bag contains X counters.

There are only red counters and blue counters in the bag.

There are 4 more blue counters than red counters in the bag.

Finty takes at random 2 counters from the bag.

The probability that Finty takes 2 blue counters from the bag is $\frac{3}{8}$

Work out the value of X .

Show clear algebraic working.

$$\begin{array}{ll} R & B \\ y & y+4 \end{array}$$

$$P(BB) = \frac{(y+4) \times (y+3)}{(2y+4) \times (2y+3)} = \frac{3}{8}$$

$$8(y^2 + 7y + 12) = 3(4y^2 + 14y + 12)$$

$$8y^2 + 56y + 96 = 12y^2 + 42y + 36$$

$$0 = 4y^2 - 14y - 60$$

$$0 = 2y^2 - 7y - 30$$

$$0 = (2y+5)(y-6)$$

$$y = -\frac{5}{2}$$

$$\text{so } y = 6$$

(reject as must
be an integer)

$$\begin{aligned} (2 \times 6) + 4 \\ = 16 \end{aligned}$$

(Total for Question 20 is 5 marks)

21 The function f is such that $f(x) = 5 + 6x - x^2$ for $x \leq 3$

(a) Express $5 + 6x - x^2$ in the form $p - (x - q)^2$ where p and q are constants.

$$-1[x^2 - 6x] + 5$$

$$-1[(x-3)^2 - 9] + 5$$

$$-1(x-3)^2 + 9 + 5$$

$$14 - (x-3)^2$$

(2)

(b) Using your answer to part (a), find the range of values of x for which $f^{-1}(x)$ is positive.

$$y = 14 - (x-3)^2$$

$$(x-3)^2 = 14-y$$

$$x-3 = \sqrt{14-y}$$

$$x = 3 + \sqrt{14-y}$$

$$\text{so } f^{-1}(x) = 3 + \sqrt{14-x} > 0$$

$$\sqrt{14-x} > -3$$

$$14-x < 9$$

$$5 < x$$

$$\text{AND } x \leq 14$$

$$5 < x \leq 14$$

(5)

(Total for Question 21 is 7 marks)

TOTAL FOR PAPER IS 100 MARKS

P 6 2 6 5 7 A 0 2 3 2 4