

International GCSE Maths					
Question	Working	Answer	Mark	Notes	
1	For [8 hours 12 minutes =] 8.2 [hours] or $8\frac{12}{60}$ oe or $\frac{41}{5}$ oe or $8 \times 60 + 12 (= 492)$ [minutes]		3	B1	For correctly writing the time as a time in hours or minutes or for a correct calculation to do this
	[Average speed =] $\frac{5658}{8.2}$ oe eg $\frac{5658}{"492"} \times 60$ oe			M1	For use of speed = distance \div time (use of their time in hours – if used minutes, then must multiply by 60) (allow $5658 \div 8.12 (= 696.79\dots)$ for this mark if B0 awarded (allow 696 – 697))
	<i>Working not required, so correct answer scores full marks (unless from obvious incorrect working)</i>	690		A1	
Total 3 marks					

2			91 – 6n	2	B2	For a correct answer in any form eg $91 - 6 \times n$ or $-6n + 91$ or $85 + (n - 1)(-6)$ oe (B1 for $-6n + k$ oe (k may be zero or absent)) NB: award full marks for eg $x = 91 - 6n$ or n th term = $91 - 6n$ but only B1 for $n = 91 - 6n$
						Total 2 marks

3	$8 \times x (= 8x)$ or $14 \times x (= 14x)$ or $(14 - 8) \times x (= 6x)$ or $\frac{1}{2} \times (14 - 8) \times (13 - x) (= 39 - 3x)$ or $\frac{13+x}{2} \times (14-8) (=39+3x)$ or $\frac{1}{2} \times 13 \times (14 - 8) (=39)$ or $\frac{8+14}{2} \times x (= 11x)$ or $14 \times 13 (=182)$ or $8 \times (13 - x) (= 104 - 8x)$ or $\left(\frac{8+14}{2} \times (13-x)\right) (= 143 - 11x)$ oe		4	M1 one correct area linked to the shape
	$14x + 6 \times \frac{1}{2} \times (13 - x)$ oe eg $8x + \frac{x+13}{2} \times 6$ or $\frac{8+14}{2} \times x + \frac{13 \times (14-8)}{2}$ or “182” - $\left(\frac{8+14}{2} \times (13-x)\right)$ or $11x + 39$ oe			M1 ft from correct working expression for total area of shape – with no parts omitted or duplicated Adding up parts of given shape or large rectangle subtracting trapezium (or subtracting (rectangle + triangle))
	eg $11x + 39 = 91.8$ or $14x + 39 - 3x = 91.8$ or $182 - 143 + 11x = 91.8$ or $16x + 6x + 78 = 183.6$ oe			M1 fully correct equation with no fractions (allow 91.8 or multiples of 91.8 but no other decimals) and no brackets
	<i>Working not required, so correct answer scores full marks (unless from obvious incorrect working)</i>	4.8		A1 or $4\frac{4}{5}$ oe or $\frac{24}{5}$ oe
				Total 4 marks

4		eg $(36 \div 9) \times 5$ or 20 [ducks] or 20 : 36 or for writing the 3 parts of the ratio correctly eg 35 : 10 : 18 oe		3	M1 For a fully correct calculation for the number of ducks or stating 20 ducks – may be shown in a ratio – does not need to be labelled if it is clear that the number or calculation refers to the number of ducks
		“20” $\div 2 = 10$ and 10×7 oe or $\frac{36}{18} \times 35$ oe		M1	For a correct calculation to find the number of chickens. (award the M2 for 70 : 20 : 36 or a different order if intention is clear eg by labels)
		<i>Working not required, so correct answer scores full marks (unless from obvious incorrect working)</i>	70	A1	
					Total 3 marks

5	(a)	$6x^2 + 9x - 3x^2 - 5x$		2	M1 expansion with at least 3 correct terms (must see for example, $6x^2$ and not just $3x \times 2x$)(can assume that no sign in front of a number is a + if terms written in a list or table)
		<i>Working not required, so correct answer scores full marks (unless from obvious incorrect working)</i>	$3x^2 + 4x$		A1 or $4x + 3x^2$ or $x(3x + 4)$ or $x(4 + 3x)$
	(b)	$eg p + d = at$ or $-at = -d - p$ or $\frac{p}{a} = \frac{at}{a} - \frac{d}{a}$ oe		2	M1 Correct first stage in rearrangement
		<i>Working not required, so correct answer scores full marks</i>	$t = \frac{p + d}{a}$		A1 oe eg $t = \frac{p}{a} + \frac{d}{a}$ or $t = \frac{-d - p}{-a}$ Must have “ $t =$ ” either in working or on answer line
	(c)	$w^2 \times w^n = w^{10}$ or $w^5 \times w^n = w^{13}$ or $w^5 \times w^{n-3} = w^{10}$ or $\frac{w^{5+n}}{w^3} = w^{10}$ oe or $5 + n - 3 = 10$ or $2 + n = 10$ or $5 + n = 13$		2	M1 A correct first stage simplifying at least one index in a correct equation or a clearly correct subsequent stage showing correct use of a rule of indices eg $w^5 \times w^n = w^{30}$ and $w^n = w^{30-5}$ or a correct equation using indices only
		<i>Working not required, so correct answer scores full marks (unless from obvious incorrect working)</i>	8		A1 accept w^8 (trial and error gains full marks if correct and no marks if incorrect unless a rule of indices is clearly shown)
					Total 6 marks

6	(a)	<p>eg $1 - (0.2 + 0.12 + 0.08) (= 0.6)$</p> $1 - \left(\frac{20}{100} + \frac{12}{100} + \frac{8}{100}\right) \left(= \frac{60}{100}\right) \text{ oe}$ <p>or</p> $100(%) - (20(%) + 12(%) + 8(%) (= 60(%)$ <p>or</p> $0.2 + 0.12 + 0.08 + 3x + x = 1 \text{ oe}$		3	M1	For a correct calculation for the remaining probability or a correct equation for the remaining probability
		<p>“0.6” $\div 4 (= 0.15)$ oe or “0.6” $\div 4 \times 3$</p> <p>or “0.6” $\times 0.75$ oe</p> <p>(Sight of 0.15 in the table for Orange or Pink or 0.45 for Pink gains M2)</p>				For dividing the remaining probability by 4 or finding $\frac{3}{4}$ of the remaining probability NB “0.6” means 0.6 must come from correct working
		<p><i>Working not required, so correct answer scores full marks (unless from obvious incorrect working)</i></p>	0.45		A1	<p>or $\frac{9}{20}$ oe or 45% (if working in % final answer must have % sign). Allow $\frac{0.45}{1}$</p> <p>If no answer on answer line, check in the correct space in table above. Value on the answer line takes precedence over the table.</p>
	(b)	0.12 $\times 150$ oe eg $12 + 6$		2	M1	For a correct calculation to find the number of times the spinner lands on blue
		<p><i>Working not required, so correct answer scores full marks (unless from obvious incorrect working)</i></p>	18		A1	<p>(an answer of $\frac{18}{150}$ scores M1A0 as this is a probability not a number of times)</p>

7	(a)		-2, -1, 0, 1, 2	2	B2 (B1 for 4 correct values and no incorrect values (eg -1, 0, 1, 2) or for 6 values with no more than one incorrect value (eg -2, -1, 0, 1, 2, 3))
	(b)	$7t - 2t \leq 31 + 3$ or $5t \leq 34$ or $-3 - 31 \leq 2t - 7t$ or $-34 \leq -5t$ oe		2	M1 t terms on one side and numbers on the other. Condone = rather than \leq or any other sign for this mark.
		<i>Working required</i>	$t \leq 6.8$		A1 oe (dep on M1) eg $t \leq \frac{34}{5}$ or $t \leq 6\frac{4}{5}$ or $6.8 \geq t$ Must have correct sign on answer line (sight of correct answer in working space and just 6.8 oe on answer line gains M1 only)
					Total 4 marks

8	(a)	$1.4 \times 10^9 - 8.2 \times 10^7$ or $1.4 \times 10^9 - 0.082 \times 10^9$ or $140 \times 10^7 - 8.2 \times 10^7$ ($= 131.8 \times 10^7$)		2	M1 or for $1 318 000 000$ oe but not in standard form eg 1318×10^6 or 1.318×10^n where $n \neq 9$
		<i>Working not required, so correct answer scores full marks (unless from obvious incorrect working)</i>	1.318×10^9		A1 Allow 1.32×10^9 or 1.3×10^9
	(b)	$\frac{9.9 \times 10^6}{9.1 \times 10^5} \text{ oe}$		2	M1
		<i>Working not required, so correct answer scores full marks (unless from obvious incorrect working)</i>	11		A1 allow $10.8 - 11$ (inclusive) SC: if M1 not scored, award B1 for an answer of $\frac{1}{11}$ allow $10.8 - 11$ for the denominator
					Total 4 marks

9	(a)		$5a^4c^3(5c^4d + 9a^5h)$	2	B2	If not B2 then award B1 for any correct factorisation with at least 2 of: the 5, a term in a , a term in c , outside the bracket eg $5ac(5a^3c^6d + 9a^8c^2h)$ or $a^2c(25a^2c^6d + 45a^7c^2h)$ (NB: not just a^4 etc as we want to know students have considered more than just one letter or the number) or the correct common factor and a 2 term expression inside the bracket eg $5a^4c^3(5c^4 + 9a^5)$ (this is missing d in first term and h in the second but the common factor is correct)
	(b)	$4x^2 + 10x + 10x + 25 = 4x^2 - 2x + 6x - 3$ $4x^2 + 20x + 25 = 4x^2 + 4x - 3$		3	M1	Correct expansion of $(2x + 5)^2$ or $(2x + 3)(2x - 1)$ or expansion of both sets of brackets with at least 3 of 4 terms correct in both (NB: if written as a 3 term quadratic (and not seen as 4 terms) then the middle term must be correct as it is equivalent to 2 correct terms) (eg (RHS) $4x^2 + 4x + 3$ has 1 error, $2x^2 + 4x - 3$ has 1 error, $4x^2 + 10x - 3$ has 2 errors)
		$10x + 10x - 6x + 2x = -3 - 25$ or $3 + 25 = -16x$ or $16x = -28$ oe			M1	ft if previous mark awarded. For terms in x on one side and number terms on the other side in a correct ft equation dependent on a linear equation
		<i>Working not required, so correct answer scores full marks (unless from obvious incorrect working eg -1.75 oe from $2x^2 + 20x + 25 = 2x^2 + 4x - 3$ scores M2A0)</i>	-1.75		A1	or $-1\frac{3}{4}$ or $-\frac{7}{4}$ or $-\frac{28}{16}$ or $-1\frac{12}{16}$ oe
						Total 5 marks

10	$5 \times 74 (= 370)$ or $6 \times 77 (= 462)$ or $5 \times 0.74 (= 3.7)$ or $6 \times 0.77 (= 4.62)$		3	M1 one correct product	M2 for $74 + (3 \times 6)$ oe or $77 + (3 \times 5)$ oe (where $3 = 77 - 74$)
	$6 \times 77 - 5 \times 74$ or “462” – “370” or $(6 \times 0.77 - 5 \times 0.74) \times 100$ or (“4.62” – “3.7”) $\times 100$			M1 from correct working	
	<i>Working not required, so correct answer scores full marks (unless from obvious incorrect working)</i>	92		A1 allow 92/100 or 92% or 92 out of 100 (trial and error scores no marks unless correct – and then it gains full marks)	
				Total 3 marks	

11	(a)	$\frac{1}{2^2} \times 2^4$ <p>or eg $2 \times (2^4)^2 = (2^x)^2$ or $2^9 = 2^{2x}$</p>		2	M1 for a correct expression in powers of 2 that is equivalent to 2^x eg $2^{\frac{1}{2}} \times 2^4$ or for showing $\sqrt{2} = 2^{\frac{1}{2}}$ and $16 = 2^4$ or for writing the equation in powers of 2 eg $2 \times (2^4)^2 = (2^x)^2$ or $2^9 = 2^{2x}$
		<i>Working required</i>	$\frac{9}{2}$		A1 or 4.5 or $4\frac{1}{2}$ dependent on M1
	(b)	$\frac{11^{-30}}{11^4}$ <p>or $-30 - 4 = n$ or $-30 = n + 4$ oe</p>		2	M1 For $(11^{-6})^5$ written as 11^{-30} in the equation or $(11^{-6})^5 = 11^{-30}$ shown in working or a correct equation with indices only (no marks for $3.914\dots \times 10^{-36}$)
		<i>Working required</i>	-34		A1 dep on M1 (as we have asked for working)
Total 4 marks					

12		$\frac{50}{360} \times \pi \times 7 \times 2$ oe eg $\frac{14\pi}{36} \times 5$ or “43.98...” $\div 360 \times 50$ oe		2	M1 Students may use π or 3.14, 3.142 or $\frac{22}{7}$
		<i>Working not required, so correct answer scores full marks (unless from obvious incorrect working)</i>	6.1		A1 Accept answers in the range 6.05 – 6.2
					Total 2 marks

13	$4x(3x + 1) = 12x^2 + 4x$ or $4x(2x - 3) = 8x^2 - 12x$ or $(3x + 1)(2x - 3) = 6x^2 - 9x + 2x - 3 (= 6x^2 - 7x - 3)$		3	M1 for expanding two of the three factors, allow one error
	$(12x^2 + 4x)(2x - 3) = 24x^3 - 36x^2 + 8x^2 - 12x$ oe $(8x^2 - 12x)(3x + 1) = 24x^3 + 8x^2 - 36x^2 - 12x$ oe $4x(6x^2 - 7x - 3) =$ eg $24x^3 - 28x^2$ oe			M1 (dep)ft for expanding by the third factor, allow one error (some may do the expansion in one stage and will get to $24x^3 - 36x^2 + 8x^2 - 12x$ without firstly expanding two factors)
	<i>Working required</i>	$24x^3 - 28x^2 - 12x$		A1 dep on M1 isw correct factorisation eg $4(6x^3 - 7x^2 - 3x)$ $x(24x^2 - 28x - 12)$ $4x(6x^2 - 7x - 3)$ do not isw incorrect simplification eg $24x^3 - 28x^2 - 12x = 6x^3 - 7x^2 - 3x$ gets M2A0
				Total 3 marks

14		16 – 9		2	M1 9 and 16 clearly identified either in list or stated. Some may have also identified the second 13 which we will allow as working so long as not intended as the LQ or UQ
		<i>Working required</i>	7		A1 Dep on M1
					Total 2 marks

15	$ORQ = 90 - 60 (=30)$ or $OQR = 30$ $PQR = 0.5 \times (360 - 238) (= 61)$ or $QPR = 60$ or $OPR = \frac{180 - (360 - 238)}{2} (= 29)$		4	<p>M1 The correct working or the correct angle for ORQ or OQR or PQR or QPR or OPR. Must be clearly stated as the correct angle or shown on the diagram in correct position. (eg just seeing 30 in working without a label is not sufficient for the award of this mark)</p>
	<p><i>Working not required, so correct answer scores M1A1 (unless from obvious incorrect working)</i></p>	31		<p>A1 if not on answer line, may be seen on diagram or clearly labelled</p>
	<p><i>NB: degrees symbol not essential for reasons</i></p> <p><i>We will allow the symbol Δ for 'triangle'</i> \angle for angle Σ for sum</p>	full reasons for method used		<p>B2 (dep on a fully correct method that should lead to the answer) for fully correct reasons for method used (underlined words must be seen) eg</p> <p>Angle between <u>tangent</u> and <u>radius</u> is 90° <u>Angles</u> around a <u>point</u> total 360° <u>Angle</u> at <u>centre</u> is <u>twice</u> angle at <u>circumference/edge</u> Total of <u>angles</u> in <u>triangle</u> is 180° / <u>triangle</u> 180° Base angles in an <u>isosceles</u> triangle (or <u>2 sides equal</u>, so <u>2 angles equal</u>) <u>Angles</u> in a <u>quadrilateral</u> total 360° or <u>quadrilateral</u> 360° / Accept "4-sided shape" or "quad" <u>Alternate segment</u> theorem</p>
				(B1 dep on M1 for at least one reason for method used)
				Total 4 marks

16	<p>eg $10000x = 2813.13\dots$ $100x = 28.13\dots$</p> <p>or $1000x = 281.313\dots$ $10x = 2.813\dots$</p> <p>or $100x = 28.1313\dots$ $x = 0.2813\dots$</p> <p>oe</p>		2	<p>M1 For 2 recurring decimals that when subtracted give a whole number or terminating decimal (27.85 or 278.5 or 2785 etc) eg $10000x = 2813.13\dots$ and $100x = 28.1313\dots$ or $1000x = 281.313\dots$ and $10x = 2.81313\dots$ or $100x = 28.1313\dots$ and $x = 0.281313\dots$ with intention to subtract. (if recurring dots not shown then showing at least one of the numbers to at least 6sf) or $0.28 + 0.00\dot{1}\dot{3}$ and eg $100x = 0.1313\dots$, $10000x = 13.1313\dots$ with intention to subtract.</p>
	<p>eg $10000x - 100x = 2813.13\dots - 28.1313\dots = 2785$ and $\frac{2785}{9900} = \frac{557}{1980}$</p> <p>or $1000x - 10x = 281.313\dots - 2.81313\dots = 278.5$ and $\frac{278.5}{990} = \frac{557}{1980}$</p> <p>or $100x - x = 28.1313\dots - 0.281313\dots = 27.85$ and $\frac{27.85}{99} = \frac{557}{1980}$</p> <p>or eg $10000x - 100x = 13.1313\dots - 0.1313\dots = 13$ and $0.28 + \frac{13}{9900} = \frac{28 \times 99 + 13}{9900} = \frac{2785}{9900} = \frac{557}{1980}$ oe</p>	shown	A1	<p>for completion to $\frac{557}{1980}$ dep on M1 (NB: this is a "use algebra to show that..." question, so we need to see algebra as well as seeing all the stages of working to award full marks)</p>
				Total 2 marks

17	eg $2n, 2n + 2, 2n + 4$ or $2n - 2, 2n, 2n + 2$ etc		3	M1 3 consecutive even numbers in algebraic form (any letter can be used)
	eg $(2n + 4)^2 - (2n)^2$ $(= 4n^2 + 8n + 8n + 16 - 4n^2 (= 16n + 16))$ or $(2n + 2)^2 - (2n - 2)^2$ $(= 4n^2 + 4n + 4n + 4 - (4n^2 - 4n - 4n + 4) (= 16n))$			M1 for squaring the largest and smallest even numbers and subtracting (no need to expand or simplify for this mark)
	eg $8(2n + 2) = 16n + 16$ or eg $16n + 16 = 8(2n + 2)$ or eg $16n = 8(2n)$ or eg $8n + 8n = 8(n + n)$ or eg $\frac{16n + 16}{2n + 2} = 8$	Correctly shown		A1 dep on M2 for use of algebra to show correct conclusion (SCB1 for eg $(p + 4)^2 - p^2$) (SCB2 for use of eg $(p + 4)^2 - p^2 = 8p + 16 = 8(p + 2)$ If the student shows this and also says “it is true for all numbers, so it must be true for even numbers” oe then this would gain M2A1
	Alternative			Total 3 marks
	eg a, b, c are consecutive even numbers where $a < b < c$ and one of $b = \frac{a + c}{2}$ or $a + c = 2b$ or $c - a = 4$ oe		3	M1 3 numbers defined as consecutive even numbers with one correct equation, writing one term in terms of one or more of the others or $c - a = 4$
	eg a, b, c are consecutive even numbers where $a < b < c$ and all of $b = \frac{a + c}{2}$ and $a + c = 2b$ and $c - a = 4$ oe			M1 3 numbers defined as consecutive even numbers with three correct equations that involve all letters in some place
	Now $c^2 - a^2 = (c - a)(c + a) = 4 \times 2b = 8b$	Correctly shown		A1 dep on M2 for use of algebra to show correct conclusion Total 3 marks

18	(a)	eg height of first bar labelled as FD 4 or one 1 cm by 1 cm square = 5 people or 1 line of 5 small squares = 1 person or one 2cm by 2 cm square = 20 people etc		2	M1	for the use of frequency density – ie that area is proportional to frequency – with either a correct frequency density unambiguously labelled on axis or for an area representing a correct number of people or 2 correct frequencies completed
		<i>Working not required, so correct answer scores full marks (unless from obvious incorrect working)</i>	35, 39, 56		A1	All 3 correct
	(b)		Correct bar	1	B1	Width from 30 – 60 and height 1 cm
	(c)	$0.5 \times "56" + 30 (= 58)$ or $40 + "35" + "39" + "56" + 30 (= 200)$		2	M1ft	follow through their stated value for $20 \leq d < 30$ for total greater than 25 or ft their 3 values in the table for total
		<i>Working not required, so correct answer scores full marks (unless from obvious incorrect working)</i>	$\frac{58}{200}$		A1ft	ft dep on a completed table oe eg $\frac{29}{100}$ or 0.29 or 29%
						Total 5 marks

19	(i)		45	3	B1
	(ii)		12		B1
	(iii)		28		B1
					Total 3 marks

20		9.65, 9.75, 5.85, 5.95, 2.5, 3.5		3	B1 for any one of these stated or used, accept 9.749, 5.949, 3.49
		$\frac{9.75 - 5.85}{2.5}$			M1 for $\frac{UB_t - LB_w}{LB_y}$ where $9.7 < UB_t \leq 9.75$, $5.85 \leq LB_w < 5.9$, $2.5 \leq LB_y < 3$ This allows for the student who uses some sort of lower/upper value, but are slightly inaccurate eg using 9.74 for t
		<i>Working required</i>	1.56		A1 dep on previous marks (as working is requested)
					Total 3 marks

21		$[x =] \frac{5}{9\left(\frac{5}{5a-2}\right) + 5} \text{ oe or } y = \frac{5}{9x} - \frac{5}{9} \text{ oe}$		4	<p>M1 A correct substitution for y or writing y in terms of x</p>
		$[x =] \frac{5(5a-2)}{45 + 5(5a-2)} \text{ oe or } (5-5x)(5a-2) = 45x \text{ oe}$ <p>or $9x = \frac{5(45a-18)}{35+25a} \text{ oe}$</p>			<p>M1 Multiplying each term in the numerator and denominator by $(5a-2)$ to eliminate the fraction in the denominator or equating y's and getting rid of fractions as far as shown on left or single fraction in terms of a</p>
		$[x =] \frac{25a-10}{35+25a} \text{ oe or } [x =] \frac{5(5a-2)}{5(7+5a)}$			<p>M1 A correct fraction not in simplest form with all brackets expanded or numerator and denominator factorised with the same common factor taken out</p>
		<p><i>Working not required, so correct answer scores full marks (unless from obvious incorrect working)</i></p>	$x = \frac{5a-2}{7+5a}$		<p>A1 Correctly simplified $x =$ needed for the answer, or $x =$ previously seen in working with correct simplified expression</p> <p>Do not isw if students have tried to do some incorrect cancelling eg $x = \frac{5a-2}{7+5a} = \frac{-2}{7}$ gets M3A0</p>
					Total 4 marks

22	$[AM =] \sqrt{5^2 + 15^2} (= \sqrt{250} = 15.8\dots)$ where M is midpoint of EF , oe other correct method to find AM $[AD =] \sqrt{12^2 + 15^2} (= \sqrt{369} = 19.2\dots)$ $[DM =] \sqrt{12^2 - 5^2} (= \sqrt{119} = 10.9\dots)$		4	<p>M2 for a complete method to find two of AM, AD, DM (where M is the midpoint of EF)</p> <p>Other longer ways to find AM, AD, DM may be used but must be a complete method eg</p> $\angle DEM = \cos^{-1}\left(\frac{5}{12}\right) (= 65.37\dots) \text{ and } DM = 12 \sin 65.37\dots$ $\angle DEM = \cos^{-1}\left(\frac{5}{12}\right) (= 65.37\dots) \text{ and } DM = 5 \tan 65.37\dots$ <p>Use $10 \div 2$ as 5 throughout</p> <p>(M1 For a complete method to find one of AM, AD, DM (where M is the midpoint of EF))</p>
	$\text{eg } \tan DAM = \frac{\sqrt{119}}{\sqrt{250}} \left(= \frac{10.9\dots}{15.8\dots} \right) \text{ oe}$ $\text{or } \sin DAM = \frac{\sqrt{119}}{\sqrt{369}} \left(= \frac{10.9\dots}{19.2\dots} \right) \text{ oe}$ $\text{or } \cos DAM = \frac{\sqrt{250}}{\sqrt{369}} \left(= \frac{15.8\dots}{19.2\dots} \right) \text{ oe}$			<p>M1 a correct method to find the required angle –other longer methods may be used but they must get to the stage of an equation for the required angle</p> $\text{eg } \sin DAM = \frac{10.9\dots}{\sqrt{15.8\dots^2 + 10.9\dots^2}}$ <p>NB: “10.9...” and “15.8...” must come from correct working</p>
	<i>Working not required, so correct answer scores full marks (unless from obvious incorrect working)</i>	34.6		A1 any answer which rounds to 34.6
				Total 4 marks

23		$a + d = 8.5$, $a + 4d = 13$ oe		5	M1	for at least 1 correct equation or for $d = 1.5$
		$a = 7$, $d = 1.5$			A1	both values correct
		$\frac{N}{2}(2 \times 7 + (N-1)1.5) = 292$ (eg $3N^2 + 25N - 1168 [= 0]$ or $1.5N^2 + 12.5N - 584 [= 0]$)			M1	A correct equation for the total of the first N terms of the series with a and d substituted in. The mark can be gained by using their values of a and d even if no previous marks awarded.
		eg $(3N + 73)(N - 16) [= 0]$ $[N =] \frac{-25 \pm \sqrt{25^2 - 4 \times 3 \times -1168}}{2 \times 3}$			M1	A correct method dep on the previous M1 for solving their 3 term quadratic equation using any correct method (allow one sign error and some simplification – allow as far as $\frac{-25 \pm \sqrt{625+14016}}{6}$) oe (may be \pm or just +) or if factorising, allow brackets which expanded give 2 out of 3 terms correct, or if completing the square allow as far as the stage $3((N + \frac{25}{6})^2 - \frac{25^2}{6^2}) - 1168 (= 0)$
		<i>Working required</i>	16		A1	dep on M2
						Total 5 marks

24	(a)	$g(2) = 7 \times 2 - 6 (= 8)$ or $5(7 \times 2 - 6)^2 - 10(7 \times 2 - 6) + 7$		2	M1
		<i>Working not required, so correct answer scores full marks</i>	247		A1
	(b)	eg $y = 5(x^2 - 2x) + 7$ or $y = 5(x^2 - 2x + \frac{7}{5})$ oe	eg $x = 5(y^2 - 2y) + 7$ or $x = 5(y^2 - 2y + \frac{7}{5})$	4	M1 or eg $\frac{y-7}{5} = x^2 - 2x$
		$eg y = 5[(x-1)^2 - 1^2] + 7$ or $y = 5\left((x-1)^2 - 1^2 + \frac{7}{5}\right)$ oe	$eg x = 5((y-1)^2 - 1^2) + 7$ or $x = 5\left((y-1)^2 - 1^2 + \frac{7}{5}\right)$ oe		M1 or eg $\frac{y-7}{5} = (x-1)^2 - 1^2$
		$(x-1)^2 = \frac{y-2}{5}$ oe	$(y-1)^2 = \frac{x-2}{5}$ oe		M1 or eg $(x-1)^2 = \frac{y-7}{5} + 1$
		<i>Working not required, so correct answer scores full marks (unless from obvious incorrect working)</i>	$1 + \sqrt{\frac{x-2}{5}}$		A1 Must be in terms of x , oe eg $1 + \sqrt{\frac{x-7}{5}} + 1$ (NB: $f^{-1}(x) = 1 \pm \sqrt{\frac{x-2}{5}}$ is 3 marks)
		Alternative for (b)			Total 6 marks
		Let $x = 5y^2 - 10y + 7$ $\Leftrightarrow 5y^2 - 10y + (7 - x) = 0$ oe		4	M1
		$[y =] \frac{10 \pm \sqrt{100 - 20(7-x)}}{10}$			M1
		$1 \pm \sqrt{\frac{x-2}{5}}$			M1
		<i>Working not required, so correct answer scores full marks (unless from obvious incorrect working)</i>	$1 + \sqrt{\frac{x-2}{5}}$		A1 Must be in terms of x
					Total 6 marks

25	[chord $AB = \sqrt{5^2 + 5^2 - 2 \times 5 \times 5 \times \cos 50}$ or $2 \times 5 \times \sin 25$ (= $10\sin 25$ or $4.226\dots$)]		<p>6</p> <p>M1 oe</p> <p>M1 oe may use other methods but must be a complete method for $\angle APB$ or $\angle OPA$ (see below for sine rule)</p> <p>M1 oe independent</p> <p>M1 oe NB: $2 \times "31.88\dots" = "63.77\dots"$</p> <p>M1 oe $(10.9\dots - 9.57\dots) + (8.90\dots - 7.17\dots)$</p> <p>A1 allow 3 – 3.1</p>
	[$\angle APB = \cos^{-1} \left(\frac{4^2 + 4^2 - "4.226\dots"^2}{2 \times 4 \times 4} \right) (= 63.77\dots)$ or [$\angle OPA = \sin^{-1} \left(\frac{0.5 \times "4.226\dots"}{4} \right) (= 31.88\dots)$]]		
	[Area sector $AOB = \frac{50}{360} \times \pi \times 5^2 (= \frac{125}{36} \pi$ or $10.9\dots)$]		
	[Area sector $APB = \frac{"63.77\dots"}{360} \times \pi \times 4^2 (= 8.90\dots)$]		
	$\left(\frac{50}{360} \pi \times 5^2 - \frac{1}{2} \times 5^2 \times \sin 50 \right) + \left(\frac{"63.77\dots"}{360} \times \pi \times 4^2 - \frac{1}{2} \times 4^2 \times \sin "63.77\dots" \right)$		
	<i>Working not required, so correct answer scores full marks (unless from obvious incorrect working)</i>	3.06	
	Alternative version (using line of symmetry OP in quadrilateral $OAPB$)		
	[$\angle OPA = \sin^{-1} \left(\frac{5 \sin 25}{4} \right) (= 31.88\dots)$]		
	[Area sector $APB = \frac{2 \times "31.88\dots"}{360} \times \pi \times 4^2 (= 8.90\dots)$]		
	[Area $OAPB = 2 \times \frac{1}{2} \times 5 \times 4 \times \sin(180 - "31.88\dots" - 25) (= 16.75\dots)$]		
	[Area sector $AOB = \frac{50}{360} \times \pi \times 5^2 (= \frac{125}{36} \pi = 10.9\dots)$]		
	[Area $\mathbf{R} = "10.9\dots" + "8.90\dots" - "16.75\dots"$]		
	<i>Working not required, so correct answer scores full marks (unless from obvious incorrect working)</i>	3.06	
			Total 6 marks

26		eg $\overrightarrow{OP} = n(2\mathbf{a} + 3\mathbf{b})$ or $\overrightarrow{OP} = 2\mathbf{a} + m(5\mathbf{b} - 2\mathbf{a})$ or $\overrightarrow{OP} = 5\mathbf{b} + x(2\mathbf{a} - 5\mathbf{b})$		5	M1 for a vector equation for \overrightarrow{OP}
		eg $\overrightarrow{OP} = n(2\mathbf{a} + 3\mathbf{b})$ and $\overrightarrow{OP} = 2\mathbf{a} + m(5\mathbf{b} - 2\mathbf{a})$ or eg $\overrightarrow{OP} = n(2\mathbf{a} + 3\mathbf{b})$ and $\overrightarrow{OP} = 5\mathbf{b} + x(2\mathbf{a} - 5\mathbf{b})$ oe			M1 2 vector equations for \overrightarrow{OP} that can be used to find \overrightarrow{OP} - must be in terms of \mathbf{a} and \mathbf{b} and a scalar
		eg $5m = 3n$ or $m = \frac{3}{5}n$ or $2n = 2 - 2m$ or $n = 1 - m$ oe and $2 - 2 \times \frac{3}{5}n = 2n$ or $2 \times \frac{5}{3}m = 2 - 2m$ oe or eg $2n = 2x$ or $n = x$ or $3n = 5 - 5x$ oe and $3x = 5 - 5x$ or $3n = 5 - 5n$ oe			M1 Writing one equation in terms of only one scalar eg one of n or m or x etc
		eg $m = \frac{3}{8}$ or $n = \frac{5}{8}$ or $x = \frac{5}{8}$ oe			M1 for a correct value for one scalar
		Working is required	$\frac{5}{4}\mathbf{a} + \frac{15}{8}\mathbf{b}$		A1 oe (dep on M1) but terms in \mathbf{a} and terms in \mathbf{b} should be simplified. eg $\frac{1}{8}(10\mathbf{a} + 15\mathbf{b})$ or $\frac{5}{8}(2\mathbf{a} + 3\mathbf{b})$ etc
					Total 5 marks
		Alternative method as a vector method not requested			
		eg $\overrightarrow{OP} = n(2\mathbf{a} + 3\mathbf{b})$		5	M1 for a vector equation for \overrightarrow{OP}

		eg $CP : OP = 3 : 5$ or $CP : CO = 3 : 8$ or $\frac{CP}{OP} = \frac{3}{5}$ or $\frac{CP}{CO} = \frac{3}{8}$ oe			M2 for a correct ratio for two sides in triangle ACP and triangle BOP that help to find \overrightarrow{OP} as a fraction of \overrightarrow{OC} (could be seen on the diagram)
		$\overrightarrow{OP} = \frac{5}{8} \overrightarrow{OC}$ or $n = \frac{5}{8}$			M1
		<i>Working is required</i>	$\frac{5}{4}\mathbf{a} + \frac{15}{8}\mathbf{b}$		A1 oe (dep on M1) but terms in \mathbf{a} and terms in \mathbf{b} should be simplified. eg $\frac{1}{8}(10\mathbf{a} + 15\mathbf{b})$ or $\frac{5}{8}(2\mathbf{a} + 3\mathbf{b})$ etc
					Total 5 marks