

Question	Working	Answer	Mark	Notes
Apart from questions 9, 16, 20, 23 (where the mark scheme states otherwise) the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method				
1	$95 \times 8 + 105 \times 12 + 115 \times 15 + 125 \times 10 + 135 \times 3 (= 5400)$ or $760 + 1260 + 1725 + 1250 + 405 (= 5400)$			M2 for at least 4 correct products added (need not be evaluated) or If not M2 then award M1 for consistent use of value within interval (including end points) for at least 4 products which must be added or correct midpoints used for at least 4 products and not added
	'5400' \div '48'			M1 dep on at least M1 Allow division by their Σf provided addition or total under column seen
		112.5	4	A1 oe accept 112 or 113 from complete working Accept 112.5 with no working Do not accept 112 or 113 with no working
Total 4 marks				
2	Two pairs of intersecting arcs with equal radius centre D and E			M1 for 2 pairs of arcs that intersect within guidelines or correct perpendicular bisector without arcs.

			Correct bisector with arcs	2	A1
					Total 2 marks

3	(a)	Examples There are no members that are in both A and B No members in common (in A and B) No numbers the same (in A and B) B has even numbers. A has odd numbers except 2 which is not in B Nothing in A is in B oe No overlap A and B don't share any numbers	Correct statement	1	B1 for a statement which indicates correct meanings for intersection and empty set
	(b)		1 and 9	1	B1
	(c)	e.g. 	1, 2, 8, 9	2	B2 for fully correct (B1 for 3 or 4 correct with no more than one addition or a fully correct Venn diagram)

					Total 4 marks
--	--	--	--	--	----------------------

4		$\pi \times 7^2 \times 20 (= 3078.76...) \text{ or } 980\pi$			M1 for complete method to find volume
			3080	2	A1 for answer in range 3077.2 – 3080
					Total 2 marks
5	(a)	$4 \times 120 (= 480)$			M1
		e.g. $120 \div 2 \times 5 (= 300) \text{ or }$ $120 \times 0.4 \times 7 (= 336) \text{ or }$ $(120 - '60' - '48') \times 8 (= 96) \text{ or }$ $120 \times 0.1 \times 8 (= 96)$			M1 for a method to find the income for one of the selling prices
		e.g. $(120 \div 2 \times 5) + (120 \times 0.4 \times 7) +$ $((120 - '60' - '48') \times 8) (= 732) \text{ or }$ $(120 \div 2 \times 5) + (120 \times 0.4 \times 7) +$ $(120 \times 0.1 \times 8) (= 732) \text{ or }$ $'300' + '336' + '96' (= 732)$			M1 for a complete method to find the total income
		e.g. $\frac{'732' - '480'}{'480'} \times 100 \text{ or }$ $'252' \div '480' \times 100 \text{ or }$ $\left(\frac{'732'}{'480'} \times 100 \right) - 100 \text{ or } 152.5 - 100 \text{ or }$ $\left(\frac{'732'}{'480'} - 1 \right) \times 100 \text{ or } 0.525 \times 100$			M1 for a complete method to find the percentage profit
			52.5	5	A1 accept 53
	(b)	e.g. $1 + 0.2 (= 1.2) \text{ or }$ $100(%) + 20(%) (= 120(%)) \text{ or }$			M1

		$\frac{15}{120}$ (= 0.125) oe			
		e.g. $15 \div 1.2$ or $15 \div 120 \times 100$ or $15 \times 100 \div 120$			M1 dep
			12.5(0)	3	A1 accept (£)12.5, (£)12.50p, 1250p if the £ sign is crossed out
					Total 8 marks

5 ALT	(a)	$4 \times 120 (= 480)$			M1
		e.g. $120 \div 2 \times 1 (= 60)$ or $120 \times 0.4 \times 3 (= 144)$ or $(120 - '60' - '48') \times 4 (= 48)$ or $120 \times 0.1 \times 4 (= 48)$			M1 for a method to find the profit of one of the books
		e.g. $(120 \div 2 \times 1) + (120 \times 0.4 \times 3) +$ $((120 - '60' - '48') \times 4) (= 252)$ or $(120 \div 2 \times 1) + (120 \times 0.4 \times 3) +$ $(120 \times 0.1 \times 4) (= 252)$ or $'60' + '144' + '48' (= 252)$			M1 for a complete method to find the total profit
		$'252' \div '480' \times 100$ oe			M1 for a complete method to find the percentage profit
			52.5	5	A1 accept 53
	(b)	e.g. $1 + 0.2 (= 1.2)$ or $100(%) + 20(%) (= 120(%))$ or $\frac{15}{120} (= 0.125)$ oe			M1
		e.g. $15 \div 1.2$ or $15 \div 120 \times 100$ or $15 \times 100 \div 120$			M1 dep
			12.5(0)	3	A1 accept (£)12.5, (£)12.50p, 1250p if the £ sign is crossed out
Total 8 marks					

6	(a)	$\frac{15}{6}$ or $\frac{6}{15}$ or $\frac{4.2}{6}$ or $\frac{6}{4.2}$ oe 2.5 or 0.4 or 0.7 or 1.4(2857.....)			M1 for a correct scale factor, accept ratio notation eg 6 : 15
			10.5	2	A1 oe
	(b)	$19.5 \div 2.5$ or 19.5×0.4 oe or $4.2 \times \frac{19.5}{(a)}$			M1 If using DF ft their answer from part (a)
			7.8	2	A1 oe
					Total 4 marks

7		e.g. $30 \times 26.8 (= 804)$ or $13 \times 25 (= 325)$ or $(26.8 - 25) \times 30$ or 1.8×30			M1 for finding the total marks for the boys or the total test marks
		e.g. $(30 \times 26.8 - 13 \times 25) \div (30 - 13)$ $(= 28.1764...)$ or $('804' - '325') \div (30 - 13) (= 28.1764...)$ or $('804' - '325' \div 17) (= 28.1764...)$ or $((26.8 - 25) \times 30) \div 17 + 25$ $(= 28.1764...)$ or $'1.8' \times 30 \div 17 + 25 (= 28.1764...)$			M1 for a complete method to find the mean mark for the girls
			28.2	3	A1 accept 28.15 – 28.2 (accept without working) (Accept 28 from complete working)
					Total 3 marks

8		$(x) \times 1000 \text{ or } (x) \div 60 \text{ or }$ $(x) \div 60 \div 60 \text{ or }$ $(x) \times 1000 \div 60 \text{ oe}$			M1 for at least one of $\times 1000$ or $\div 60$ or $\frac{5}{18}$ oe
		$x \times \frac{1000}{60 \times 60} \text{ oe}$			M1 (dep) for a complete correct method
			$\frac{5}{18}x$	3	A1 accept $0.2\dot{7}x$ or $0.2\bar{7}x$ or $\frac{x}{3.6}$ or $\frac{1}{3.6}x$
Total 3 marks					

Using elimination then substitution					
9		e.g. $x + 2y = -0.5$ $+ 6x - 2y = 32$ ($7x = 31.5$)	e.g. $3x + 6y = -1.5$ $- 3x - y = 16$ ($7y = -17.5$)		M1 for a correct method to eliminate x or y : coefficients of x or y the same and correct operation to eliminate selected variable (condone any one arithmetic error)
		e.g. $'4.5' + 2y = -0.5$ or $3 \times '4.5' - y = 16$	e.g. $x + 2 \times '-2.5' = -0.5$ or $3x - '-2.5' = 16$		M1 (dep) for substituting their value found of one variable into one of the equations or for repeating above method to find second variable
			$x = 4.5$ $y = -2.5$	3	A1 (dep on first M1) for both solutions
Total 3 marks					

Using substitution					
9	$3(-0.5 - 2y) - y = 16$ $(7y = -17.5)$ or $\frac{16+y}{3} + 2y = -0.5$ $(7y = -17.5)$	$3x - \left(\frac{-0.5 - x}{2} \right) = 16$ $(7x = 31.5)$ or $x + 2(3x - 16) = -0.5$ $(7x = 31.5)$			M1 for correctly writing x or y in terms of the other variable and correctly substituting
	e.g. $x = -0.5 - 2' - 2.5'$ or $x = \frac{16 + ' - 2.5'}{3}$	e.g. $y = \frac{-0.5 - '4.5'}{2}$ or $y = 3'4.5' - 16$			M1 (dep) for substituting their value found of one variable into one of the equations
			$x = 4.5$ $y = -2.5$	3	A1 (dep on first M1) for both solutions
					Total 3 marks

10	(a)		$y = 5x - 3$ oe	2	B2 fully correct equation eg $y = 5x + -3$ or $y - -3 = 5(x - 0)$ If not B2 then B1 for $y = 5x$ or $y = 5x + a$ or $y = bx - 3$ or ($L=$) $5x - 3$
	(b)	$x \geq 0, x \leq 2, y \geq 1, y \leq 3$ or	$0 \leq x \leq 2$ $1 \leq y \leq 3$	2	B2 fully correct oe (B1 for 2 or 3 out of 4 inequalities correct) (Treat double-ended inequalities as two separate inequalities) (SC B2 $y > 3, y < 1, x < 0, x > 2$) Accept $<$, \leq , $>$ and \geq throughout
					Total 4 marks

11	(a)	$\pm(7.7 \times 10^4 - 9.5 \times 10^3)$ or $\pm(7.7 \times 10^4 - 0.95 \times 10^4)$ or $\pm(77\ 000 - 9\ 500)$ or $\pm67\ 500$ oe			M1 for clearly subtracting the correct values
			6.75×10^4	2	A1 allow -6.75×10^4 allow $\pm6.8 \times 10^4$
	(b)	$(8.3 \times 10^3) \times 50$ ($= 415\ 000$ or 4.15×10^5) or $(4.2 \times 10^4) \div 50$ ($= 840$ or 8.4×10^2) or $(4.2 \times 10^4) \div (8.3 \times 10^3)$ ($= 5(.060\dots)$)			M1 for a relevant calculation
			No supported by correct comparable figures in the same form	2	A1 for NO and 415 000 and 42 000 or NO and 4.15×10^5 NO and 840 and 8 300 or NO and 8.4×10^2 NO and 5(.060...)
	(c)	1.15×0.92 ($= 1.058$) oe or 105.8 $\frac{n \times 1.15 \times 0.92}{n}$ where n is a number or variable e.g. $\frac{200 \times 1.15 \times 0.92}{200}$			M1 condone $x \times 1.15 \times 0.92$ oe
			5.8	2	A1 NB. -5.8 (M1A0) decrease of 5.8% (M1A0)

					Total 6 marks
12		$(ED =) \frac{16.7}{\tan 43} (=17.90855...)$ or $(CD =) \frac{16.7}{\sin 43} (= 24.48686...)$			M1 for a correct method to find length CD or ED $(E$ is the point on line AD from where a vertical line is drawn downwards from point C) NB. Sine rule may be used
		$(ED =) \frac{16.7}{\tan 43} (=17.90855...)$ and $(CD =) \frac{16.7}{\sin 43} (= 24.48686...)$			M1 for a correct method to find both CD and ED or use of Pythagoras theorem $(CD =) \sqrt{16.7^2 + '17.90....'^2} (= 24.48686...)$ $(ED =) \sqrt{'24.48....'^2 - 16.7^2} (=17.90855...)$ NB. Sine rule must be in the correct form to give the answer
		$16.7 + 21.2 \times 2 + '24.5' + '17.9'$ $ (= 101.495...)$			M1 (dep on M2) complete method with no extra sides
			101	4	A1 accept 101 - 102
					Total 4 marks

13	(a)		7, 17, 29, 48, 66, 80	1	B1 cao
	(b)				M1 ft from (a) if only one addition error for at least 4 points plotted correctly at end of interval or for all 6 points plotted consistently within each interval in the frequency table at the correct height
			Correct cf graph	2	A1 accept curve or line segments accept curve that is not joined to (0,0)
	(c)		17 – 19	1	B1 ft from a cumulative frequency graph dep on M1 in (b)
	(d)	For correct use 20 and 60 (20.25 and 60.75) indicated (horizontal line or mark) on the cumulative frequency axis and their readings taken from time taken axis e.g. readings of 11–13 and 22–24 indicated on horizontal axis or 23 – 12			M1 for a complete method to ft from a cumulative frequency graph dep on M1 in (b)
			9 – 13	2	A1 accept 9 – 13 ft from a cumulative frequency graph dep on M1 in (b)
					Total 6 marks

14				M2 for $\sqrt{5^2 + (-12)^2}$ or $\sqrt{(-5)^2 + 12^2}$ or $\sqrt{5^2 + 12^2}$ If not M2 then M1 for $\begin{pmatrix} 6 \\ -9 \end{pmatrix} - \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ or $\begin{pmatrix} 6 \\ -9 \end{pmatrix} + \begin{pmatrix} -1 \\ -3 \end{pmatrix} (= \begin{pmatrix} 5 \\ -12 \end{pmatrix})$ or or $\begin{pmatrix} 1 \\ 3 \end{pmatrix} - \begin{pmatrix} 6 \\ -9 \end{pmatrix}$ or $\begin{pmatrix} 1 \\ 3 \end{pmatrix} + \begin{pmatrix} -6 \\ 9 \end{pmatrix} (= \begin{pmatrix} -5 \\ 12 \end{pmatrix})$
		13	3	A1
				Total 3 marks

15		$y^2 = \frac{3x-2}{x+1}$			M1 squaring both sides to get a correct equation
		$xy^2 + y^2 = 3x - 2$ oe			M1 for multiplying by the denominator and expanding the bracket
		$y^2 + 2 = x(3 - y^2)$ oe			M1 for isolating terms in x and factorising the correct expression of the equation
			$x = \frac{2 + y^2}{3 - y^2}$	4	A1 accept $x = \frac{-2 - y^2}{y^2 - 3}$ oe
				Total 4 marks	

16		$\frac{4+\sqrt{8}}{\sqrt{2}-1} \times \frac{(\sqrt{2}+1)}{(\sqrt{2}+1)}$			M1 for rationalising the denominator by multiplying numerator and denominator by $\sqrt{2} + 1$ (or $-\sqrt{2} - 1$) condone missing brackets
		e.g, $\frac{4\sqrt{2} + 4 + \sqrt{8}\sqrt{2} + \sqrt{8}}{2-1} \text{ or}$ $\frac{4\sqrt{2} + 4 + 4 + \sqrt{8}}{2-1} \text{ or}$ $\frac{4\sqrt{2} + 4 + \sqrt{16} + \sqrt{8}}{2-1} \text{ or}$ $= 4\sqrt{2} + 4 + 4 + \sqrt{8} \text{ oe}$			M1 (dep) for expansion of numerator with at least 3 terms correct oe Using $-\sqrt{2} - 1$ e.g. $\frac{-4\sqrt{2} - 4 - \sqrt{8}\sqrt{2} - \sqrt{8}}{-2+1} \text{ or } \frac{-4\sqrt{2} - 4 - 4 - \sqrt{8}}{-2+1} \text{ or}$ $\frac{-4\sqrt{2} - 4 - \sqrt{16} - \sqrt{8}}{-2+1}$
			8 + 6 $\sqrt{2}$	3	A1 (dep on M2) or for stating $a = 8$ and $b = 6$
					Total 3 marks

18		x^2 oe or $x(12 - 3x)$ oe		M1 for finding an expression for the area of one face
		$x^2 + x^2 + 48x - 12x^2 (= 48x - 10x^2)$		M1 for a complete expression for A (6 sides) with brackets expanded
		$'48 - 20x' = 0$ $'-10'[(x - '2.4')^2 - '2.4'^2] oe$		M1 for differentiating a correct expression for A (allow 1 error) and equating to zero or completing the square
		$(x = 2.4)$ $48 \times '2.4' - 10 \times '2.4'^2$		M1 ft if previous M1 awarded for isolating x and substituting into A or finding max value of A from completing the square
			57.6	5
				A1 accept 58 from correct working
				Total 5 marks

19		$250 = 0.5 \times 26 \times AC \times \sin(39)$ oe			M1 for using the area formula correctly If this mark is awarded then ft on the remaining M marks
		$(AC) = 30.5(5579\dots)$ or 30.6			A1
		$\frac{(AB)}{\sin 47} = \frac{'30.56'}{\sin 95} \text{ oe}$ or $\frac{(BC)}{\sin(180-95-47)} = \frac{'30.56'}{\sin 95} \text{ oe}$			M1 dep on M1 for correct substitution into sine rule
		$(AB) = \frac{'30.56'}{\sin 95} \times \sin 47$ $= 22.4(3407\dots)$ or $(BC) = \frac{'30.56'}{\sin 95} \times \sin(180-95-47)$ $= 18.8(8524\dots)$			M1 (dep on previous M marks) for a correct method to find a missing length or sight of values in the ranges 22.39 – 22.47 for AB 18.8 – 18.92 for BC
		$250 + 0.5 \times '30.56' \times '22.43' \times \sin(180 - 95 - 47) (= 461.03\dots)$ or $250 + 0.5 \times '30.56' \times '18.88' \times \sin(47) (= 461.03\dots)$			M1 for a complete method to find total area
			461	6	A1 accept 461 - 462
					Total 6 marks

20		$x^2 - 3x(9 - x) + 2(9 - x)^2 (= 0)$	$(9 - y)^2 - 3y(9 - y) + 2y^2 (= 0)$		M1 substitution of linear equation into quadratic
		e.g. $6x^2 - 63x + 162 (= 0)$ or $2x^2 - 21x + 54 (= 0)$ allow $2x^2 - 21x = -54$ oe	e.g. $6y^2 - 45y + 81 (= 0)$ or $2y^2 - 15y + 27 (= 0)$ allow $2y^2 - 15y = -27$ oe		A1 (dep on M1) writing the correct quadratic expression in form $ax^2 + bx + c (= 0)$ allow $ax^2 + bx = c$
		e.g. $(2x - 9)(x - 6) (= 0)$ $x = \frac{-(-21) \pm \sqrt{(-21)^2 - 4 \times 2 \times 54}}{2 \times 2}$ e.g. $2\left(\left(x - \frac{21}{4}\right)^2 - \left(\frac{21}{4}\right)^2\right) = -54$	e.g. $(2y - 9)(y - 3) (= 0)$ $y = \frac{-(-15) \pm \sqrt{(-15)^2 - 4 \times 2 \times 27}}{2 \times 2}$ e.g. $2\left(\left(x - \frac{15}{4}\right)^2 - \left(\frac{15}{4}\right)^2\right) = -27$		M1 (dep on M1) for a complete method to solve their 3-term quadratic equation (allow one sign error and some simplification – allow as far as $\frac{21 \pm \sqrt{441 - 432}}{4}$)
		$x = 4.5$ and $x = 6$	$y = 4.5$ and $y = 3$		A1 (dep on M1) both x-values or both y-values
				(4.5, 4.5) and (6, 3)	5 A1 (dep on M1) oe Must be paired correctly
					Total 5 marks

20 Alt	$(x - y)(x - 2y) (= 0)$				M1 for a method to factorise C
	$(x - (9 - x))(x - 2(9 - x)) (= 0)$				A1 (dep M1) substitution of L into their factorised C
	$(2x - 9)(3x - 18) (= 0)$ oe				M1 (dep on M1)
	$x = 4.5$ and $x = 6$				A1 (dep on M1) both x-values or both y-values
			(4.5, 4.5) and (6, 3)	5	A1 (dep on M1) oe Must be paired correctly
					Total 5 marks

21	<p>e.g.</p> $(AC =) \sqrt{(4x)^2 + (2x)^2} \quad (= \sqrt{20}x) \text{ or}$ $(AC =) \sqrt{(4)^2 + (2)^2} \quad (= \sqrt{20}) \text{ or}$ $(AF =) \sqrt{(4)^2 + (2)^2 + (3)^2} \quad (= \sqrt{29}) \text{ or}$ $(AF =) \sqrt{(\sqrt{20})^2 + (3)^2} \quad (= \sqrt{29}) \text{ or}$			<p>M1 for a method to find an expression for length AC or length AF with or without x or</p> <p>x can represent any number</p> <p>e.g.</p> $AB : BC : CF = 2 : 1 : 1.5$ $AC^2 = \sqrt{2^2 + 1^2} \quad (= \sqrt{5})$
	<p>e.g.</p> $(CAF =) \tan^{-1} \left(\frac{3x}{\sqrt{20x}} \right) \quad (= 33.854...) \text{ or}$ $(CAF =) \tan^{-1} \left(\frac{3}{\sqrt{20}} \right) \quad (= 33.854...) \text{ or}$ $(CAF =) \cos^{-1} \left(\frac{\sqrt{20}}{\sqrt{29}} \right) \quad (= 33.854...) \text{ or}$ $(CAF =) \sin^{-1} \left(\frac{3}{\sqrt{29}} \right) \quad (= 33.854...)$			<p>M1 for a complete method to find angle CAF using length AC or for a complete method to find angle CAF using length AF with or without x or</p> <p>x can represent any number</p> <p>$AB : BC : CF = 2 : 1 : 1.5$</p> $(CAF =) \tan^{-1} \left(\frac{1.5}{\sqrt{5}} \right) \quad (= 33.854...)$
		33.9°	3	A1 answers in the range 33.85 – 33.9
				Total 3 marks

22		$x(2x + 5)(3x - 1)$ or $(2x + 5)(3x^2 - x)$ or $(2x + 5)(2x - 5)$ oe			M1 for a correct factorisation of the numerator into 2 or 3 factors where one of the factors must be $(2x + 5)$ or denominator into 2 brackets where one of the factors must be $(2x + 5)$
		$x(2x + 5)(3x - 1)$ or $(2x + 5)(3x^2 - x)$ and $(2x + 5)(2x - 5)$ oe			M1 for a correct factorisation of the numerator into 2 or 3 factors where one of the factors must be $(2x + 5)$ and denominator into 2 brackets where one of the factors must be $(2x + 5)$
			$\frac{x(3x-1)}{2x-5}$	3	A1 accept $\frac{3x^2-x}{2x-5}$ oe Do not ISW
					Total 3 marks

23		RG and GR method	RR and GG method		
		$\frac{3}{t} \times \frac{t-3}{t-1}$ or $\frac{t-3}{t} \times \frac{3}{t-1}$	$\frac{3}{t} \times \frac{2}{t-1}$ or $\frac{t-3}{t} \times \frac{t-4}{t-1}$		M1 for one correct product
		$\frac{3}{t} \times \frac{t-3}{t-1} +$ $\frac{t-3}{t} \times \frac{3}{t-1} = \frac{12}{35}$ or $2 \times \frac{3}{t} \times \frac{t-3}{t-1} = \frac{12}{35}$ oe	$\frac{3}{t} \times \frac{2}{t-1} +$ $\frac{t-3}{t} \times \frac{t-4}{t-1} = \frac{23}{35}$		M1 dep on M1 for a correct equation
		e.g. $2t^2 - 37t + 105 = 0$ or allow $2t^2 - 37t = -105$			A1 (dep on M2) writing the correct quadratic expression in form $ax^2 + bx + c = 0$ allow $ax^2 + bx = c$
		e.g. $(2t - 7)(t - 15) = 0$ e.g. $t = \frac{-(-37) \pm \sqrt{(-37)^2 - 4 \times 2 \times 105}}{2 \times 2}$ e.g. $2 \left(\left(t - \frac{37}{4} \right)^2 - \left(\frac{37}{4} \right)^2 \right) = -105$			M1 (dep on A1) for a complete method to solve the 3-term quadratic equation (allow one sign error and some simplification – allow as far as $\frac{37 \pm \sqrt{1369 - 840}}{4}$) or Can be implied by answers of 15 (and $\frac{7}{2}$)
			12	5	A1 (dep on A1) cao
					Total 5 marks

23 Alt	RG and GR method	RR and GG method		
	$\frac{3}{x+3} \times \frac{x}{x+2} \text{ or}$ $\frac{x}{x+3} \times \frac{3}{x+2}$	$\frac{3}{x+3} \times \frac{2}{x+2} \text{ or}$ $\frac{x}{x+3} \times \frac{x-1}{x+2}$		M1 for one correct product
	$\frac{3}{x+3} \times \frac{x}{x+2} +$ $\frac{x}{x+3} \times \frac{3}{x+2} = \frac{12}{35} \text{ or}$ $2 \times \frac{3}{x+3} \times \frac{x}{x+2} = \frac{12}{35} \text{ oe}$	$\frac{3}{x+3} \times \frac{2}{x+2} +$ $\frac{x}{x+3} \times \frac{x-1}{x+2} = \frac{23}{35}$		M1 dep on M1 for a correct equation
	e.g. $2x^2 - 25x + 12 (= 0)$ or allow $2x^2 - 25x = -12$			A1 (dep on M2) writing the correct quadratic expression in form $ax^2 + bx + c (= 0)$ allow $ax^2 + bx = c$
	e.g. $(2x - 1)(x - 12) = 0$ e.g. $x = \frac{-(-25) \pm \sqrt{(-25)^2 - 4 \times 2 \times 12}}{2 \times 2}$ e.g. $2 \left(\left(x - \frac{25}{4} \right)^2 - \left(\frac{25}{4} \right)^2 \right) = -12$			M1 (dep on A1) for a complete method to solve the 3-term quadratic equation (allow one sign error and some simplification – allow as far as $\frac{25 \pm \sqrt{625 - 96}}{4}$) or can be implied by answers of 12 (and $\frac{1}{2}$)
			12	5
				A1 (dep on A1) cao

24	(a)		13	1	B1
	(b)	$y = 2(x^2 - 10x) + 9$ or $y = 2\left(x^2 - 10x + \frac{9}{2}\right)$			M1 for a correct equation for a first step in order to complete the square
		e.g. $y = 2((x-5)^2 - 5^2) + 9$ or $y = 2\left((x-5)^2 - 5^2 + \frac{9}{2}\right)$ or $y = 2(x-5)^2 - 41$ oe			M1 dep
		$(x-5)^2 = \frac{y+41}{2}$ oe			M1
			$5 + \sqrt{\frac{x+41}{2}}$	4	A1 oe
					Total 5 marks

Note: Allow candidates to swap x and y when finding the inverse

24 Alt	(a)		13	1	B1
	(b)	$2x^2 - 20x + (9 - y) = 0$			M1 for a correct first step
		$x = \frac{20 \pm \sqrt{400 - 8(9 - y)}}{4}$ or $x = \frac{20 + \sqrt{400 - 8(9 - y)}}{4}$			M1 dep
		$x = 5 \pm \sqrt{\frac{41 + y}{2}}$ oe			M1
			$5 + \sqrt{\frac{x+41}{2}}$	4	A1 oe
		Total 5 marks			
Note: Allow candidates to swap x and y when finding the inverse					

24 Alt	(a)		13	1	B1
	(b)	$2x^2 - 20x + (9 - y)(= 0)$			M1 for a correct first step
		e.g. $2((x-5)^2 - 5^2) + 9 - y (= 0)$ or $2((x-5)^2 - 5^2 + \frac{9}{2}) - y (= 0)$ or $2(x-5)^2 - 41 - y (= 0)$			M1 dep
		$(x-5)^2 = \frac{y+41}{2}$ oe			M1
			$5 + \sqrt{\frac{x+41}{2}}$	4	A1 oe
					Total 5 marks
Note: Allow candidates to swap x and y when finding the inverse					