

International GCSE Maths A (4MA1) November 2020 – Paper 1HR Mark scheme

Apart from Questions 1, 3c, 12, 13b, 19, 23 where the mark scheme states otherwise, the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method.

Q	Working	Answer	Mark	Notes
1	e.g. $\frac{15}{4}$		3	M1 for $3\frac{3}{4}$ expressed as an improper fraction
	e.g. $\frac{15^5}{4} \times \frac{7}{9^3}$ OR $\frac{105}{36}$ oe			M1 correct cancelling or multiplication of numerators and denominators without cancelling
	e.g. $\frac{15^5}{4} \times \frac{7}{9^3} = \frac{35}{12} = 2\frac{11}{12}$ or $\frac{15}{4} \times \frac{7}{9} = \frac{105}{36} = \frac{35}{12} = 2\frac{11}{12}$ or $\frac{15}{4} \times \frac{7}{9} = \frac{105}{36} = 2\frac{33}{36} = 2\frac{11}{12}$	shown	A1	dep on M2, for conclusion to $2\frac{11}{12}$ from correct working – either sight of the result of the multiplication e.g. $\frac{105}{36}$ oe must be seen or correct cancelling prior to the multiplication to $\frac{35}{12}$ NB: use of decimals scores no marks
				Total 3 marks

2			2	M1 Arcs on BC , AB and arcs from these points meeting or for bisector without arcs
		Correct bisector		A1 must see correct arcs
				Total 2 marks

3	(a)		h^9	1	B1
	(b)	$(-5)^2 - 4 \times -5$ oe e.g. $25 + 20$		2	M1 for a correct substitution
			45		A1
	(c)	$5x - 3 = 4(2x + 3)$ oe or $\frac{5x}{4} - \frac{3}{4} = 2x + 3$ oe		3	M1 for correctly removing the denominator, condone missing brackets
		e.g. $5x - 8x = 12 + 3$ or $-3x = 12 + 3$ or $8x - 5x = -12 - 3$ or $3x = -12 - 3$ or $-\frac{3}{4} - 3 = 2x - \frac{5x}{4}$ or $-\frac{15}{4} = \frac{3x}{4}$			M1 for a correct rearrangement with terms in x on one side and numbers on the other, allow correct rearrangement of their equation in the form $ax + b = cx + d$
			-5		A1 dep on at least M1 SCB2 for an answer of $x = -2$ coming from $5x - 3 = 8x + 3$ or $x = 5$ coming from $5x - 3 = 2x + 12$
					Total 6 marks

4	(a)		$30 < t \leq 40$	1	B1
	(b)	e.g. $5 \times 4 + 15 \times 10 + 25 \times 15 + 35 \times 25 + 45 \times 6 (= 1690)$ or $20 + 150 + 375 + 875 + 270 (= 1690)$		4	M2 For correct products using midpoints (allowing one error) with intention to add. If not M2 then award M1 for products using frequency and a consistent value within the range (allowing one error) with intention to add or correct products using midpoint without addition.
		“1690” $\div 60$			M1 dep on M1
			28.2		A1 accept 28.1 – 28.2
					Total 5 marks

5	(a)	8265 – 7500 (= 765) or $\frac{8265}{7500}$ (= 1.102)		3	M1 8265 – 7500 could be embedded in another calculation.
		$\frac{"765"}{7500} \times 100$ oe or “1.102” $\times 100 - 100$ oe			M1
			10.2		A1 oe
	(b)	e.g. $31.5(0) \div (1 - 0.3)$		3	M2 for a complete method e.g. $31.5(0) \div (1 - 0.3)$ (M1) for $31.5(0) \div (100 - 30)$ (= 0.45) or e.g. $(1 - 0.3)x = 31.5(0)$
			45		A1
					Total 6 marks

6	e.g. $a = (-3 + 47) \div 2$ (= 22) or $\frac{11+b}{2} = -19$ ($b = -38 - 11 = -49$) or method to add 25 to -3 or method to subtract 25 from 47 or method to subtract 30 from -19 or method to subtract 60 from 11		2	M1 for a correct method to find either coordinate or one coordinate correct. Look for correct method on their diagram, if used.
		$a = 22, b = -49$		A1 both correct
				Total 2 marks

7	Use of 2 hrs 42 mins = 2.7 hrs or 162 mins		4	B1
	e.g. $90 \times 2.7 (= 243)$ or e.g. $\frac{90}{60} \times 162 (= 243)$ or e.g. $\frac{S}{90} = \frac{2.7}{3}$			M1 for use of $D = S \times T$ (accept use of their time e.g. 90×2.42) or for setting up an equation using proportion
	e.g. “243” $\div 3$ or ($S =$) $90 \times \frac{2.7}{3}$			M1 (dep on M1) for their $D \div 3$ or for solving their equation
		81		A1
				Total 4 marks

8	for 0.08×1200 oe (= 96) or 1.08×1200 oe (= 1296)	OR 1200×1.08^3	3	M1 for 0.08×1200 oe (= 96) or 1.08×1200 oe (= 1296)	OR M2 for 1200×1.08^3 or 1200×1.08^4 (= 1632.59) (M1 for 1200×1.08^2 (= 1399.68))
	1.08 \times “1296” (= 1399.68) oe 1.08 \times “1399.68” (= 1511.6544) oe			M1 for completing method to find total amount in the account	
			1512	A1 accept 1511 – 1512	
				SC: if no other marks gained award M1 for 0.24×1200 oe or 288 or 1488 accept $(1 + 0.08)$ as equivalent to 1.08 throughout	
					Total 3 marks

9	e.g. $1.5 \times 1.5 (= 2.25 \text{ oe})$		3	M1 for calculating the area of the square, may be seen embedded within a calculation
	e.g. $34.8 \times "2.25"$			M1 for a complete method to find the force
		78.3		A1 oe
				Total 3 marks

10	e.g. $\frac{3}{"10"} \times 80 (= 24)$ or $\frac{2}{"10"} \times 80 (= 16)$ or $\frac{5}{"10"} \times 80 (= 40)$		5	M2 for a complete method to find the number of chocolate cakes or lemon cakes or fruit cakes "10" comes from $3 + 2 + 5$ (M1 for correct use of the ratio e.g. $80 \div "10" (= 8)$)
	e.g. "16" $\times \frac{3}{4} \times 1.7(0) (= 20.4(0))$ or "40" $\times \frac{7}{8} \times 2.4(0) (= 84)$			M1 for a method to find the profit for lemon cakes or fruit cakes
	e.g. "24" $\times 2 (= 48)$ and "16" $\times \frac{3}{4} \times 1.7(0) (= 20.4(0))$ and "40" $\times \frac{7}{8} \times 2.4(0) (= 84)$			M1 for a method to find the profit for all 3 cakes
		152.4(0)		A1
				Total 5 marks

11	(a)		9, 28, 45, 63, 76, 80	1	B1
	(b)			2	<p>B2 for a correct cf graph with points at ends of intervals and joined with a curve or line segments</p> <p>If not B2 then B1 for 5 or 6 of their points (ft from a table with only one arithmetic error) at ends of intervals and joined with a curve or line segments</p> <p>OR for 5 or 6 points plotted correctly at ends of intervals not joined</p> <p>OR for 5 or 6 of their points from table plotted consistently within each interval (not at upper ends of intervals) at their correct heights and joined with a curve or line segments</p>
	(c)	e.g. reading across from 40 and reading down		2	M1 ft reading from a cf graph provided method is shown
			35 - 38		A1 ft from their cf graph
					Total 5 marks

12	e.g. $35x + 10y = 27.5$ or $21x + 6y = 16.5$ $\begin{array}{r} 6x - 10y = 34 \\ 41x = 61.5 \end{array}$ $\begin{array}{r} 21x - 35y = 119 \\ 41y = -102.5 \end{array}$ e.g. $3x - 5\left(\frac{5.5 - 7x}{2}\right) = 17$ or $7\left(\frac{17 + 5y}{3}\right) + 2y = 5.5$ oe	4	M1 for a correct method to eliminate x or y : coefficients of x or y the same and correct operator to eliminate selected variable (condone any one arithmetic error in multiplication) or writing x or y in terms of the other variable and correctly substituting.
	$x = 1.5$ or $y = -2.5$	A1	oe, dep on M1
		M1	(dep on 1 st M1) for a correct method to find other variable by substitution of found variable into one equation or for repeating the above method to find the second variable.
	$x = 1.5$ and $y = -2.5$	A1	oe, dep on M1
			Total 4 marks

13	(a)		$15x^2 - 2x - 6$	2	B2 for correct differentiation (B1 for 2 of $15x^2, -2x, -6$ correct)
	(b)	e.g. " $15x^2 - 2x - 6 = 2$ " = 2 oe		4	M1 ft, for equating their dy/dx to 2
		$15x^2 - 2x - 8 (= 0)$			M1 (dep on M1) ft their three-term quadratic
		e.g. $(3x + 2)(5x - 4) (= 0)$ $x = \frac{2 \pm \sqrt{(-2)^2 - (4 \times 15 \times -8)}}{2 \times 15}$			M1 for solving their quadratic equation using any correct method - if factorising, allow brackets which expanded give 2 out of 3 terms correct (if using formula or completing the square allow one sign error and some simplification – allow as far as e.g. $\frac{2 \pm \sqrt{4 + 480}}{30}$ oe)
			$-\frac{2}{3}, \frac{4}{5}$		A1 oe, dep on M2 (allow -0.66 or better), Both values – isw any attempt to find y coordinates
					Total 6 marks

14	$(4x+1)(x-3) = 4x^2 - 12x + x - 3 (= 4x^2 - 11x - 3)$ $(4x+1)(5x+6) = 20x^2 + 24x + 5x + 6 (= 20x^2 + 29x + 6)$ $(x-3)(5x+6) = 5x^2 + 6x - 15x - 18 (= 5x^2 - 9x - 18)$		3	M1 for multiplying 2 brackets with at least 3 out of 4 terms correct
	$(5x+6)(4x^2 - 11x - 3) = 20x^3 - 55x^2 - 15x + 24x^2 - 66x - 18$ $(x-3)(20x^2 + 29x + 6) = 20x^3 + 29x^2 + 6x - 60x^2 - 87x - 18$ $(4x+1)(5x^2 - 9x - 18) = 20x^3 - 36x^2 - 72x + 5x^2 - 9x - 18$			M1 (dep) for multiplying the product of the first 2 brackets (ft from the 1 st stage) by the 3 rd bracket, and getting at least 3 out of 6 or 4 out of 8 terms correct
		$20x^3 - 31x^2 - 81x - 18$		A1
	Alternative			
	$20x^3 + 24x^2 - 60x^2 + 5x^2 - 15x + 6x - 72x - 18$			B2 for at least 6 out of 8 terms correct (B1 for 4 or 5 out of 8 correct terms)
		$20x^3 - 31x^2 - 81x - 18$		A1
				Total 3 marks

15		$BDF = 70^\circ$	4	B1 may be marked on diagram
		<u>Alternate segment</u> theorem		B1 reason, the angle between a tangent and a chord is equal to the angle subtended in the <u>alternate segment</u>
		$EFB = 180 - (70 + 40) = 70$ <u>opposite angles</u> in a <u>cyclic quadrilateral</u>		B1 Angle EFB with reason, <u>opposite angles</u> in a <u>cyclic quadrilateral</u> sum to 180°
		$CBF = EFB$ <u>alternate</u> angles therefore EF is parallel to ABC		B1 conclusion, <u>alternate</u> angles are equal
				Total 4 marks

16	(a)		-4	1	B1
	(b)	$(f(2.6) =) 5 \times 2.6 - 7 (= 6) \text{ or } gf(x) = \frac{5(5x-7)}{5x-7+4} \text{ oe}$		2	M1 for finding $f(2.6)$ or $gf(x)$
			3		A1
	(c)	$5\left(\frac{5x}{x+4}\right) - 7 = 2 \text{ or } \frac{5x}{x+4} = \frac{2+7}{5} \text{ oe}$		3	M1
		$25x = 9(x+4) \text{ oe}$			M1 for removing the denominator $(x+4)$ in a correct equation
			2.25		A1 oe
ALT	(c)	$fg(x) = 2 \Rightarrow g(x) = f^{-1}(2) (= 9/5)$ and attempt at f^{-1} or $f^{-1}(2)$			M1
		$x = g^{-1}("9/5")$			M1
			2.25		A1 oe
	(d)	$y = \frac{5x}{x+4}$ or $x = \frac{5y}{y+4}$ $y(x+4) = 5x$ $x(y+4) = 5y$		3	M1
		$e.g. 4y = x(5-y) \text{ or } e.g. 4x = y(5-x)$			M1 for a correct rearrangement and factorising
			$\frac{4x}{5-x}$		A1 oe e.g. $\frac{-4x}{x-5}$
					Total 9 marks

17	(a) $(FH =) \sqrt{12^2 + 12^2} (=16.97\dots \text{ or } \sqrt{288} \text{ or } 12\sqrt{2})$		3	M1
	$\tan CFH = \frac{10}{"16.97\dots"} \text{ oe}$ or e.g. $(CF =) \sqrt{"16.97"^2 + 10^2} (=19.69\dots \text{ or } \sqrt{388} \text{ or } 2\sqrt{97})$ and e.g. $\frac{\sin CFH}{10} = \frac{\sin 90}{"19.69"}$			M1 for a correct trig statement involving CFH
		30.5		A1 accept 30.4 – 30.7
(b)	$(BG =) 10 + \sqrt{15^2 - 12^2} (=19)$		3	M1
	$(BE =) \sqrt{"19"^2 + "16.97\dots"^2} \text{ oe}$			M1 ft their FH
		25.5		A1 accept 25.4 – 25.6
				Total 6 marks

18	$a + 5d = 39 \text{ or } a + 18d = 7.8 \text{ or } 13d = -31.2 \text{ oe}$		4	M1
	$a = 51 \text{ or } d = -2.4$			A1
	e.g. $\frac{25}{2}(2 \times 51 + (25-1) \times -2.4) \text{ oe}$ or $12.5(2a + 23d + d) = 12.5(39 + 7.8 - 2.4) \text{ oe}$			M1 for substituting their values for a and d into S_n , a and d must be clearly stated.
		555		A1
				Total 4 marks

19	8.35 or 7.25 or 6.15 or 5.25		3	B1
	$(8.35 \times 7.25) - (6.15 \times 5.25)$			M1 Allow $UB_{AD} \times UB_{DC} - LB_{EH} \times LB_{HG}$ where $8.3 < UB_{AD} \leq 8.35, 7.2 < UB_{DC} \leq 7.25$ $6.15 \leq LB_{EH} < 6.2, 5.25 \leq LB_{HG} < 5.3$
		28.25		A1 oe, dep on M1
				Total 3 marks

20	(i)		(-3, -2)	1	B1
	(ii)		(-1.5, 4)	1	B1 oe
					Total 2 marks

21	$12^2 = 2^4 \times 3^2$ or $2 \times 12^2 = 2^5 \times 3^2$ oe or $\frac{2 \times 12^2}{3^2} (= 32) = 2^5$		5	M1
	$18^{4n} = (2 \times 3^2)^{4n}$ or $2^{4n} \times 3^{2 \times 4n}$			M1
	$3n^2 - 14n - 5 (= 0)$			A1
	e.g. $(3n + 1)(n - 5) (= 0)$ $n = \frac{14 \pm \sqrt{(-14)^2 - (4 \times 3 \times -5)}}{2 \times 3}$			M1 for solving their 3 term quadratic equation using any correct method - if factorising, allow brackets which expanded give 2 out of 3 terms correct (if using formula or completing the square allow one sign error and some simplification – allow as far as e.g. $\frac{14 \pm \sqrt{196 + 60}}{6}$ oe)
		$-\frac{1}{3}, 5$		A1 Allow -0.33 or better for $-\frac{1}{3}$
				Total 5 marks

22	Ext angle of octagon = $360 \div 8 (= 45)$ or Int angle of octagon $(8 - 2) \times 180 \div 8$ oe $(= 135)$		6	M1 for method to find the size of one exterior or one interior angle of a regular octagon
	e.g. $10 + 2 \times 10 \times \sin 45$ $(= 10 + 10\sqrt{2} \text{ or } 24.1\dots)$ or e.g. $\frac{10 \sin 112.5}{\sin 22.5}$ $(= 24.1\dots)$			M1 method to find HE or AD 22.5 comes from $(180 - "135") \div 2$ 112.5 comes from "135" - "22.5"
	e.g. $10 \times ("10 + 10\sqrt{2})$ $(= 100 + 100\sqrt{2} \text{ or } 241.4\dots)$ or $10 \times "24.1\dots"$ $(= 241.4\dots)$			M1 area $ADEH$
	e.g. $10 \times \sin 45^\circ$ $(= 5\sqrt{2} \text{ or } 7.07\dots)$ or e.g. $\sqrt{10^2 + 10^2 - 2 \times 10 \times 10 \times \cos "135"}$ $(= 18.4\dots)$ or $\frac{10 \sin "135"}{\sin 22.5}$ $(= 18.4\dots)$			M1 finds perpendicular height of triangle ACD (may be found before, but must realise this is also height of triangle) or finds the length of AC 22.5 comes from $(180 - "135") \div 2$
	e.g. $0.5 \times "24.1\dots" \times "7.07\dots"$ $(= 85.3\dots)$ or $0.5 \times 10 \times "18.4\dots" \times \sin 112.5$ $(= 85.3\dots)$			M1 finds the area of triangle ACD 112.5 comes from "135" - "22.5"
	327			A1 accept 326 – 327
	Alternative (splitting octagon into triangles and subtracting trapezium and triangle)			
	Ext angle of octagon = $360 \div 8 (= 45)$ or Int angle of octagon $(8 - 2) \times 180 \div 8$ oe $(= 135)$ or one of 8 angles at centre = $360 \div 8 (= 45)$	6	M1 for method to find the size of one exterior or one interior angle of a regular octagon or method to find one angle at centre of octagon when split into 8 equal triangles	
	e.g. $0.5 \times 10 \times 5 \times \tan 67.5$ $(= 60.35\dots)$ or $0.5 \times \left(\frac{10 \sin 67.5}{\sin 45} \right)^2 \times \sin 45$ $(= 60.35\dots)$ or Octagon = $8 \times "60.35"$ $(= 482.8\dots)$			M1 Area of one triangle (one-eighth of octagon) or octagon
	e.g. $10 + 2 \times 10 \times \sin 45^\circ$ $(= 10 + 10\sqrt{2} = 24.14\dots)$			M1 Method to find HE
	$0.5 \times (10 + 10 + 10\sqrt{2}) \times 5\sqrt{2}$ $(= 120.71\dots)$			M1 Method to find area of trapezium $HEGF$
	$0.5 \times 10 \times 10 \times \sin 135^\circ$ $(= 35.35\dots)$			M1 Method to find area of triangle ABC
	327			A1 accept 326 – 327
				Total 6 marks

23	<p>e.g. $\frac{3}{x+7} \times \frac{2}{x+6} + \frac{4}{x+7} \times \frac{3}{x+6} + \frac{x}{x+7} \times \frac{x-1}{x+6} (= \frac{3}{8})$</p> <p>or</p> <p>e.g. $\frac{3}{N} \times \frac{2}{N-1} + \frac{4}{N} \times \frac{3}{N-1} + \frac{N-7}{N} \times \frac{N-8}{N-1} (= \frac{3}{8})$ oe</p>		4	<p>M2 for all correct products and intention to add</p> <p>(M1 for one correct product)</p>
	$5x^2 - 47x + 18 = 0$ oe $(x = 9)$ <p>or</p> $5N^2 - 117N + 592 = 0$			M1 Correct quadratic equation
		16		A1 dep on M3
				Total 4 marks