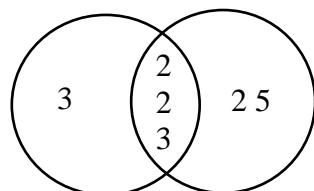


International GCSE Maths

Apart from Questions 10, 14, 15, 22, 24 the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method.


Q	Working	Answer	Mark	Notes
1 (a)		-2, -1, 0, 1, 2	2	B2 for -2, -1, 0, 1, 2 with no additions or repeats (B1 for 4 of -2, -1, 0, 1, 2 with no additions or repeats or for 6 values with no more than one incorrect value e.g. all of -2, -1, 0, 1, 2, 3 or for 5 values with one error)
(b)		Closed circle at $x = 1$ and a line with an arrow to the left	1	B1 for a closed circle at $x = 1$ and a line with an arrow of any length to the left Allow] for a closed circle Allow a line without an arrow if it reaches to at least -3
				Total 3 marks

2	0.65×300 oe			M1
		195		A1 (SCB1 for 105)
				Total 2 marks

3	$12.8^2 + x^2 = 16^2$ oe or $163.84 + x^2 = 256$ or $(x^2 =) 16^2 - 12.8^2 (= 92.16)$ or $(x^2 =) 256 - 163.84 (= 92.16)$		4	M1 for applying Pythagoras theorem correctly Allow $\cos^{-1}\left(\frac{12.8}{16}\right)(= 36.9\dots)$ and $\frac{x}{\sin(36.9\dots)} = \frac{16}{\sin 90}$
	$(x =) \sqrt{16^2 - 12.8^2} (= \sqrt{92.16}) (= 9.6)$ or $(x =) \sqrt{256 - 163.84} (= \sqrt{92.16}) (= 9.6)$			M1 for square rooting Allow $x = \frac{16}{\sin 90} \times \sin(36.9\dots)$
	$(12.8 - "9.6") + "9.6" + "9.6" + 16 + 16 + 16$ oe			M1 (dep on M1) for a complete method to find the perimeter
		70.4		A1 oe e.g. $\frac{352}{5}$
				Total 4 marks

4 (a)		15, 0, -1, 3	2	B2 for 4 correct values (B1 for 2 or 3 correct values)
(b)	$(-2, 15)$ $(-1, 8)$ $(0, 3)$ $(2, -1)$ $(3, 0)$ $(4, 3)$		2	M1 (dep on B1) ft from (a) for at least 5 points plotted correctly
		correct graph		A1 for a correct graph (clear intention to go through all the points and which must be curved at the bottom) Note: If a fully correct graph is shown, but an incomplete table is shown in (a), then award the marks for (a)
				Total 4 marks

5			4	B1 for 80
	for $\frac{a+75}{2} = 74$ oe or 73			M1 for setting up an equation using the median or for 73
	for $80 - 16 (= 64)$ oe			M1 for using the range correctly or for 64
		64, 73, 80		A1 answers can be in any order
				Total 4 marks

6 (a)	<p>36, 72, 108, ... and 120, 240, 360, ... or $2, 2, 3, 3$ and $2, 2, 2, 3, 5$ or</p> <table border="1" data-bbox="808 651 1033 809"> <tr><td>2</td><td>36</td><td>120</td></tr> <tr><td>2</td><td>18</td><td>60</td></tr> <tr><td>3</td><td>9</td><td>30</td></tr> <tr><td></td><td>3</td><td>10</td></tr> </table> <p>or $\frac{36 \times 120}{12}$ or $2, 2, 2, 3, 3, 5$ oe</p>	2	36	120	2	18	60	3	9	30		3	10		2	<p>M1 for any correct valid method e.g. for starting to list at least three multiples of each number</p> <p>2, 2, 3, 3 and 2, 2, 2, 3, 5 seen (may be in a factor tree or a ladder diagram and ignore 1) (Allow 2×2 as 4)</p> <p>or a fully correct “Venn” diagram</p>
2	36	120														
2	18	60														
3	9	30														
	3	10														
		360		A1 or $2^3 \times 3^2 \times 5$ oe (allow $2^3 \cdot 3^2 \cdot 5$)												
(b)		$5^2 \times 7^4 \times 11$	2	<p>B2 for $5^2 \times 7^4 \times 11$ (in any order)</p> <p>(B1 for 660 275 or correct unsimplified product or $5^a \times 7^b \times 11^c$ where 2 of a, b and c are correct)</p>												
				Total 4 marks												

7	$220 \div 80 (= 2.75 \text{ or } \frac{11}{4}) \text{ oe}$			M1 for a method to find the time from B to C
	$72 \times \frac{50}{60} (= 60) \text{ oe}$			M1 for a method to find the distance from C to D Allow 0.83(333...) to 2 dp truncated or rounded
	$\frac{245 + 220 + "60"}{2.5 + "2.75" + \frac{50}{60}} \left(= \frac{525}{73/12} \right) \text{ oe}$			M1 for a complete method to find the average speed for entire journey 0.83(333...) to 2 dp truncated or rounded 6.0(8333...) to 2 sf truncated or rounded
		86.3		A1 for 86.3 – 86.4
				Total 4 marks

8 (a)		50 000	1	B1
(b)		6×10^{-5}	1	B1
(c)	$2.5 \times 10^{512-700} \text{ or } 2.5 \times 10^n \text{ or } 0.25 \times 10^{-187} \text{ or } p \times 10^{-188} \text{ where } 1 \leq p < 10$		2	M1
		2.5×10^{-188}		A1
				Total 4 marks

9 (a)		x^9	1	B1 cao
(b)		$64y^6$	2	B2 for $64y^6$ (B1 for ky^6 where $k \neq 64$ or $64y^m$ where $m \neq 6$)
(c)	$(n \pm 3)(n \pm 4)$		2	M1 for $(n \pm 3)(n \pm 4)$ or $(n + a)(n + b)$ where $ab = 12$ or $a + b = -7$ Condone use of a different letter to n
		$(n - 3)(n - 4)$		A1
				Total 5 marks

10	$3 \times 2.5 (= 7.5)$ oe or $2 \times 3 \times 2.5 (= 15)$ oe or $12 \times 3 (= 36)$ oe or $2 \times 12 \times 3 (= 72)$ oe or $12 \times 2.5 (= 30)$		6	M1 for area of rectangle
	$(2 \times 3 \times 2.5) + (2 \times 12 \times 3) + (12 \times 2.5) (= 117)$ or $(2 \times 7.5) + (2 \times 36) + (12 \times 2.5) (= 117)$ or $15 + 72 + 30 (= 117)$			M1 for a complete method to find the surface area
	$1 + 0.1 (= 1.1)$ or $100(%) + 10(%) (= 110(%)$) or $\frac{26.95}{110} (= 0.245)$ oe			M1
	$26.95 \div "1.1" (= 24.5(0))$ or $26.95 \div "110" \times 100 (= 24.5(0))$ or $26.95 \times 100 \div "110" (= 24.5(0))$ oe or $"0.245" \times 100 (= 24.5(0))$ oe			M1 dep on previous M1
	$"117" \div 15 (= 7.8 \text{ or } 8)$ and $"8" \times "24.50" (= 196)$ or $"117" \div 15 (= 7.8 \text{ or } 8)$ and $200 \div "24.5" (= 8.1\dots)$ or $"117" \div 15 (= 7.8 \text{ or } 8)$ and $200 \div "8" (= 25)$			M1 for working with a whole number of tins (rounded up) to reach figures where a decision can be made
		Correct figures to show that Jonty is correct		A1 e.g. 196 7.8 or 8 and 8.1... 24.5 and 25
				Total 6 marks

11	$\frac{110}{360} \times \pi \times 7.1^2$ oe or $\frac{110}{360} \times 3.14\dots \times 7.1^2$ oe		2	M1 for a complete method to find the area
		48.4		A1 accept 48.3 – 49.2
				Total 2 marks

12 (a)	$n(3n^2 + 5n - 12n - 20)$ or $n(3n^2 - 7n - 20)$ or $(3n^2 + 5n)(n - 4)$ or $(n^2 - 4n)(3n + 5)$ or $3n^3 + 5n^2 - 12n^2 - 20n$		2	M1 for a correct partial expansion (may be unsimplified) (allow one error in the expansion of $(n - 4)(3n + 5)$ e.g. for any 3 correct terms or for 4 out of 4 correct terms ignoring signs or for $3n^2 - 7n \dots$ or for $\dots - 7n - 20$)
		$3n^3 - 7n^2 - 20n$		A1 oe e.g. if correct answer seen allow further factorisation to $n(3n^2 - 7n - 20)$
(b)	$\frac{12}{4x} + \frac{2(x+2)}{4x} + \frac{x}{4x} \text{ oe or } \frac{12 + 2(x+2) + x}{4x} \text{ oe}$ $\frac{3(8x)}{8x^2} + \frac{4x(x+2)}{8x^2} + \frac{2x^2}{8x^2} \text{ oe or}$ $\frac{3(8x) + 4x(x+2) + 2x^2}{8x^2} \text{ oe}$		3	M1 for three correct fractions with a common denominator or a single correct fraction
	$\frac{12 + 2x + 4 + x}{4x} \text{ oe or}$ $\frac{24x + 4x^2 + 8x + 2x^2}{8x^2} \text{ oe or}$ $\frac{6x^2 + 32x}{8x^2} \text{ oe or } \frac{3x^2 + 16x}{4x^2} \text{ oe or } \frac{6x + 32}{8x} \text{ oe}$			M1 for a correct single fraction with brackets expanded
		$\frac{3x + 16}{4x}$		A1 oe $\frac{16 + 3x}{4x}$
				Total 5 marks

13 (a)		$\frac{5}{12}$	2	B1 for first choice correct 0.41(666...) to 2 dp truncated or rounded
		$\frac{7}{12}, \frac{5}{12}$		B1 for second choice correct 0.58(333...) to 2 dp truncated or rounded 0.41(666...) to 2 dp truncated or rounded
(b)	" $\frac{5}{12} \times \frac{5}{12}$ oe		2	M1 ft from their tree diagram 0.58(333...) to 2 dp truncated or rounded
		$\frac{25}{144}$		A1 oe 0.17(361111...) to 2 dp truncated or rounded 17.(361111)% to 2 sf truncated or rounded
(c)	$\frac{7}{12} \times \frac{5}{12} \times \frac{x}{15}$ oe or $\frac{7}{12} \times \frac{5}{12} \times y$ or $2 \times \frac{7}{12} \times \frac{5}{12}$ oe		3	M1 for <i>GRB</i> or <i>RGB</i> or $2 \times GR$ or $2 \times RG$
	$2 \times \frac{7}{12} \times \frac{5}{12} \times \frac{x}{15} = \frac{7}{24}$ oe or $2 \times \frac{7}{12} \times \frac{5}{12} \times y = \frac{7}{24}$ oe or $\frac{7}{24} = \frac{3}{5}$ $2 \times \frac{7}{12} \times \frac{5}{12} \left(= \frac{3}{5} \right)$ oe			M1 (ft their tree diagram) for a complete method 0.29(166...) to 2 dp truncated or rounded
		9		A1
				Total 7 marks

14	$ABC = 90^\circ$ and $ACB (= ADB) = 180 - 90 - 55 (= 35)$ or $ABO = 55^\circ$ and $AOB = 180 - 2 \times 55 (= 70)$ or $BDC = 55^\circ$, $ADC = 90^\circ$ and $ADB = 90 - 55 (= 35)$		4	M1
		35		A1 for $ADB = 35$
	<u>Angles in a semicircle</u> are 90° <u>Angles in a triangle</u> add to 180° (Angles in a triangle add to 180°) <u>Angles in the same segment</u> (are equal) OR <u>angles at the circumference subtend(ed) from the same arc/chord of the circle</u> (are equal) or <u>Angles in an isosceles triangle</u> (are equal) <u>Angles in a triangle</u> sum to 180° (Angles in a triangle add to 180°) <u>Angle at the centre</u> is $2 \times$ (double) angle at circumference / <u>angle at circumference</u> is $\frac{1}{2}$ angle at centre or <u>Angles in the same segment</u> (are equal) OR <u>angles at the circumference subtend(ed) from the same arc/chord of the circle</u> <u>Angles in a semicircle</u> are 90°		B2 (dep on M1) for all 3 reasons appropriate to their method B1 (dep on M1) for one correct circle theorem appropriate to their method) NB For the third method only 2 reasons are required	
				Total 4 marks

15	<p>E.g. $n, n + 1, n + 2$</p> $(n^2 =)n^2$ $((n+1)^2 =)n^2 + n + n + 1 = n^2 + 2n + 1 \text{ oe}$ $((n+2)^2 =)n^2 + 2n + 2n + 4 = n^2 + 4n + 4 \text{ oe}$ <p>or</p> <p>E.g. $n - 1, n, n + 1$</p> $((n-1)^2 =)n^2 - n - n + 1 = n^2 - 2n + 1 \text{ oe}$ $(n^2 =)n^2$ $((n+1)^2 =)n^2 + n + n + 1 = n^2 + 2n + 1 \text{ oe}$		3	<p>M1 for 3 appropriate terms for their 3 numbers and for correctly finding the expansion of at least 2 squares (Allow $2 \times$ middle number + 2)</p>
	$n^2 + n^2 + 2n + 2n + 4 (= 2n^2 + 4n + 4) \text{ oe and}$ $2(n+1)^2 = 2n^2 + 2n + 2n + 2 (= 2n^2 + 4n + 2) \text{ oe}$ <p>or</p> $n^2 - 2n + 1 + n^2 + 2n + 1 (= 2n^2 + 2) \text{ oe}$			<p>M1 for finding the sum of first and last square and double the square of the middle (Allow $2 \times$ middle number + 2)</p>
	<p>E.g. $2n^2 + 4n + 4 = 2n^2 + 4n + 2 + 2 \text{ oe or}$</p> $2(x+1)^2 + 2 = 2(x+1)^2 + 2 \text{ oe}$ <p>or</p> $2n^2 + 2 = 2n^2 + 2 \text{ oe}$	Complete proof		<p>A1 for conclusion from two correct expressions e.g. $2n^2 + 4n + 4$ and $2n^2 + 4n + 2$</p>
				Total 3 marks

16	$\frac{100}{2} [2 \times 1 + (100-1) \times 4] (= 19900) \text{ oe or}$ $1 + (41-1) \times 4 (= 161) \text{ oe or}$ $1 + (100-1) \times 4 (= 397) \text{ oe}$		4	M1 for method to find the sum of the first 100 terms or for finding the 41 st term or for finding the 100 th term
	$\frac{40}{2} (2 \times 1 + (40-1) \times 4) (= 3160) \text{ oe or}$ $\frac{41}{2} (2 \times 1 + (41-1) \times 4) (= 3321) \text{ oe or}$ $100 - 41 + 1 (= 60) \text{ oe}$			M1 for method to find the sum of the first 40 terms or 41 terms or for finding the number of terms from the 41 st term to the 100 th term
	"19900" - "3160" or $\frac{"60"}{2} ["161" + "397"] \text{ or}$ $\frac{"60"}{2} [2 \times "161" + ("60" - 1) \times 4] \text{ oe}$			M1 for finding the difference or for finding the sum from the 41 st term to the 100 th term
		16740		A1
				Total 4 marks

17 (i)		19	1	B1
(ii)		0	1	B1
(iii)		11	1	B1
(iv)		28	1	B1
				Total 4 marks

18	$\sqrt{4} : \sqrt{9} (= 2 : 3)$ or $\frac{\sqrt{4}}{\sqrt{9}} \left(= \frac{2}{3} \right)$ oe or $\sqrt{9} : \sqrt{4} (= 3 : 2)$ or $\frac{\sqrt{9}}{\sqrt{4}} \left(= \frac{3}{2} \right)$ oe		4	M1 for finding the ratio or fraction for lengths for $A : B$ or $B : A$
	$\sqrt[3]{125} : \sqrt[3]{343} (= 5 : 7)$ or $\frac{\sqrt[3]{125}}{\sqrt[3]{343}} \left(= \frac{5}{7} \right)$ oe or $\sqrt[3]{343} : \sqrt[3]{125} (= 7 : 5)$ or $\frac{\sqrt[3]{343}}{\sqrt[3]{125}} \left(= \frac{7}{5} \right)$ oe			M1 for finding the ratio or fraction for lengths for $B : C$ or $C : B$
	$A : B = 10 : 15$ and $B : C = 15 : 21$ oe			M1 for manipulating $A : B$ and $B : C$ so that both B values are equal
		10 : 21		A1 Allow 1 : 2.1 SC3 for 21 : 10 with all working shown
				Total 4 marks

19 (a)		$-\frac{4}{3}$	1	B1
(b)	$3(x^2 + 4x) + 19$ and $3[(x+2)^2 - 2^2] + 19$ or $3\left(x^2 + 4x + \frac{19}{3}\right)$ and $3\left((x+2)^2 - 2^2 + \frac{19}{3}\right)$ or $a = 3$ and $2ab = 12$ oe and $b^2a + c = 19$ oe or $a = 3$ and $b = \frac{12}{2 \times 3}$ oe and $c = -\frac{12^2}{4 \times 3} + 19$ oe			M1 for correctly taking out a factor of 3 and correctly completing the square or for equating coefficients by expanding $a(x+b)^2 + c = ax^2 + 2abx + b^2a + c$ or for equating coefficients by using $ax^2 + bx + c = a\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a} + c$
		$3(x+2)^2 + 7$		A1 accept $a = 3, b = 2, c = 7$
				Total 3 marks

20	(a)(i)		(-6, 1)	2	B1
	(ii)		(-2, -4)		B1
	(b)	(-1, 6), (3, -2), (7, 6)	Fully correct graph	2	B2 for a fully correct graph (B1 for a V shape with least value at (3, -2))
	(c)		-3, 4	2	B2 for 2 correct values in any order (B1 for 1 correct value)
					Total 6 marks

21	16 \div 0.5 (= 32) or a correct value on the FD scale or 10 small squares = 1 watermelon oe 25 small squares (1 large square) = 16 \div 6.4 = 2.5 watermelon oe			M1 for use of area to represent frequency or one correct frequency from the 4 remaining bars
	15 \times 1 + 16 + 23 \times 1 + 30 \times 1 + 12 \times 1.5 or 15 + 16 + 23 + 30 + 18 or 16 + 0.1 \times (15 \times 10 + 23 \times 10 + 30 \times 10 + 12 \times 15) oe or (150 + 160 + 230 + 300 + 180) \times 0.1 oe or (6 + 6.4 + 9.2 + 12 + 7.2) \times 2.5 oe			M1 (dep on M1) for a fully correct method, allow one error in products or number of squares but must be the sum of 5 parts
		102		A1
				Total 3 marks

22	11.45 or 11.55 or 79.5 or 80.5 or 74.5 or 75.5		4	B1 Accept • 11.549 for 11.55 • 80.49 for 80.5 • 75.49 for 75.5
	$180 - (74.5 + 79.5) (= 26)$			M1 for a correct calculation to find the upper bound of angle B NB $180^\circ - (LB \text{ of } 75^\circ + LB \text{ of } 80^\circ)$
	$\frac{(AC)}{\sin(26)} = \frac{11.55}{\sin(74.5)} \text{ oe or}$ $\frac{(AC)}{\sin(180 - 74.5 - 79.5)} = \frac{11.55}{\sin(74.5)}$			M1 for substituting the correct bounds into the sine rule $\frac{(YZ)}{\sin("26")} = \frac{UB_1}{\sin(LB_2)} \text{ oe where}$ $11.5 < UB_1 \leq 11.55 \text{ and}$ $74.5 \leq LB_2 < 75$
		5.25		A1 awrt 5.25 from correct working
				Total 4 marks

23	$3t^2 - 2 \times 4t + 5$ or $3t^2 - 8t + 5$		6	M1 for differentiation of s with 2 out of 3 terms correct (can be implied by subsequent working)
	$3t^2 - 2 \times 4t + 5 = 0$ or $3t^2 - 8t + 5 = 0$			M1 (dep on previous M1) for equating at least a 2TQ to zero (allow inequality signs), E.g. $3t^2 - 8t = 0$ or $3t^2 + 5 = 0$ (can be implied by subsequent working)
	$(t =) \frac{5}{3}$ oe (and $t = 1$)			A1 for $\frac{5}{3}$ (and $t = 1$ may be crossed out or absent) (allow $\frac{5}{3} = 1.6(66666)$ to 2 sf truncated or rounded)
	$2t - 4 = 0$			M1 for differentiation of x to find $at + b = 0$ (allow inequality signs) where $a = 2$ and $b = -4$
	$(t =) 2$			A1 for a correct value of t
		$(1 <) t < \frac{5}{3}$ and $t > 2$		A1 oe $(t > 1) t < \frac{5}{3}$ and $t > 2$
				Total 6 marks

24	$(\vec{ON} =) \lambda(\mathbf{a} + \mathbf{b}) (= \lambda\mathbf{a} + \lambda\mathbf{b}) \text{ or}$ $(\vec{NY} =) (1 - \lambda)(\mathbf{a} + \mathbf{b}) (= (1 - \lambda)\mathbf{a} + (1 - \lambda)\mathbf{b})$			5	M1 for finding a vector for \vec{ON} or \vec{NY} or \vec{NO} or \vec{YN} in terms \mathbf{a} and \mathbf{b} and using λ oe (can be embedded)
	$(\vec{MN} = \vec{MO} + \vec{ON} =) -0.5\mathbf{a} + \lambda\mathbf{a} + \lambda\mathbf{b} (= (\lambda - 0.5)\mathbf{a} + \lambda\mathbf{b}) \text{ or}$ $(\vec{MZ} = \vec{MO} + \vec{OZ} =) -0.5\mathbf{a} + 3\mathbf{b}$ $\text{or } (\vec{MN} = \vec{MX} + \vec{XY} + \vec{YN} =) 0.5\mathbf{a} + \mathbf{b} + (\lambda - 1)(\mathbf{a} + \mathbf{b}) (= (\lambda - 0.5)\mathbf{a} + \lambda\mathbf{b})$				M1 for finding a vector for \vec{MN} or \vec{NM} or \vec{MZ} or \vec{ZM}
	$(\vec{MN} = \mu\vec{MZ} =) \mu(-0.5\mathbf{a} + 3\mathbf{b}) (= -0.5\mu\mathbf{a} + 3\mu\mathbf{b}) \text{ or}$ $(\vec{ON} = \vec{OM} + \vec{MN} =) 0.5\mathbf{a} + \mu(-0.5\mathbf{a} + 3\mathbf{b}) (= (0.5 - 0.5\mu)\mathbf{a} + 3\mu\mathbf{b}) \text{ or}$ $(\vec{NY} = \vec{NM} + \vec{MX} + \vec{XY} =) -\mu(-0.5\mathbf{a} + 3\mathbf{b}) + 0.5\mathbf{a} + \mathbf{b} (= (0.5 + 0.5\mu)\mathbf{a} + (1 - 3\mu)\mathbf{b})$			M1 for finding a vector for \vec{MN} or \vec{ON} or \vec{NY} or \vec{NM} or \vec{NO} or \vec{YN} using another variable e.g. μ oe	
	$-0.5\mu = -0.5 + \lambda \text{ oe}$ $3\mu = \lambda \text{ oe}$		$1 - \lambda = 0.5\mu + 0.5 \text{ oe}$ $1 - \lambda = 1 - 3\mu \text{ oe}$		M1 for setting up two simultaneous equations using the components of \mathbf{a} and \mathbf{b} for \vec{MN} or \vec{ON} or \vec{NY} oe
				$\frac{3}{7}$	A1 (allow $\frac{3}{7} = 0.42(8571\dots)$ to 2 sf truncated or rounded)
					Total 5 marks

24 ALT	$(\vec{ON} =) \lambda(\mathbf{a} + \mathbf{b}) (= \lambda\mathbf{a} + \lambda\mathbf{b}) \text{ or } (\vec{NY} =) (1 - \lambda)(\mathbf{a} + \mathbf{b}) (= (1 - \lambda)\mathbf{a} + (1 - \lambda)\mathbf{b})$		5	M1 for finding a vector for \vec{ON} or \vec{NY} or \vec{NO} or \vec{YN} in terms \mathbf{a} and \mathbf{b} and using λ oe	
	$(\vec{MN} = \vec{MO} + \vec{ON} =) -0.5\mathbf{a} + \lambda\mathbf{a} + \lambda\mathbf{b} (= (\lambda - 0.5)\mathbf{a} + \lambda\mathbf{b}) \text{ or}$ $(\vec{MN} = \vec{MX} + \vec{XY} + \vec{YN} =) 0.5\mathbf{a} + \mathbf{b} + (\lambda - 1)(\mathbf{a} + \mathbf{b}) (= (\lambda - 0.5)\mathbf{a} + \lambda\mathbf{b})$			M1 for finding a vector for \vec{MN} or \vec{NM} in terms \mathbf{a} and \mathbf{b} and using λ oe	
	$(\vec{NZ} = \vec{NO} + \vec{OZ} =) -\lambda(\mathbf{a} + \mathbf{b}) + 3\mathbf{b} (= -\lambda\mathbf{a} + (3 - \lambda)\mathbf{b}) \text{ or}$ $(\vec{NZ} = \vec{NY} + \vec{YZ} =) (1 - \lambda)(\mathbf{a} + \mathbf{b}) - \mathbf{b} - \mathbf{a} + 3\mathbf{b} (= -\lambda\mathbf{a} + (3 - \lambda)\mathbf{b})$			M1 for finding a vector for \vec{NZ} or \vec{ZN} in terms \mathbf{a} and \mathbf{b} and using λ oe	
	$\frac{\lambda - 0.5}{-\lambda} = \frac{\lambda}{3 - \lambda} \text{ oe}$			M1 for setting up an equation using the components of \vec{MN} and \vec{NZ} oe	
		$\frac{3}{7}$		A1 (allow $\frac{3}{7} = 0.42(8571\dots)$ to 2 sf truncated or rounded)	
					Total 5 marks